These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36677478)

  • 1. Current Trends in Metal Biomining with a Focus on Genomics Aspects and Attention to Arsenopyrite Leaching-A Review.
    Abashina T; Vainshtein M
    Microorganisms; 2023 Jan; 11(1):. PubMed ID: 36677478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomining: metal recovery from ores with microorganisms.
    Schippers A; Hedrich S; Vasters J; Drobe M; Sand W; Willscher S
    Adv Biochem Eng Biotechnol; 2014; 141():1-47. PubMed ID: 23793914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation.
    Tao H; Dongwei L
    Biotechnol Rep (Amst); 2014 Dec; 4():107-119. PubMed ID: 28626669
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermophilic microorganisms in biomining.
    Donati ER; Castro C; Urbieta MS
    World J Microbiol Biotechnol; 2016 Nov; 32(11):179. PubMed ID: 27628339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Omics on bioleaching: current and future impacts.
    Martinez P; Vera M; Bobadilla-Fazzini RA
    Appl Microbiol Biotechnol; 2015 Oct; 99(20):8337-50. PubMed ID: 26278538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms.
    Cárdenas JP; Valdés J; Quatrini R; Duarte F; Holmes DS
    Appl Microbiol Biotechnol; 2010 Oct; 88(3):605-20. PubMed ID: 20697707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In a quest for engineering acidophiles for biomining applications: challenges and opportunities.
    Gumulya Y; Boxall NJ; Khaleque HN; Santala V; Carlson RP; Kaksonen AH
    Genes (Basel); 2018 Feb; 9(2):. PubMed ID: 29466321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A greener approach for resource recycling: Manganese bioleaching.
    Ghosh S; Mohanty S; Akcil A; Sukla LB; Das AP
    Chemosphere; 2016 Jul; 154():628-639. PubMed ID: 27104228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface characterization of arsenopyrite during chemical and biological oxidation.
    Deng S; Gu G; Xu B; Li L; Wu B
    Sci Total Environ; 2018 Jun; 626():349-356. PubMed ID: 29351882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A.
    Vera M; Schippers A; Hedrich S; Sand W
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):6933-6952. PubMed ID: 36194263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arsenopyrite Bio-Oxidization Behavior in Bioleaching Process: Evidence From Laser Microscopy, SEM-EDS, and XPS.
    Yin L; Yang HY; Tong LL; Ma PC; Zhang Q; Zhao MM
    Front Microbiol; 2020; 11():1773. PubMed ID: 32849397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomics, metagenomics and proteomics in biomining microorganisms.
    Valenzuela L; Chi A; Beard S; Orell A; Guiliani N; Shabanowitz J; Hunt DF; Jerez CA
    Biotechnol Adv; 2006; 24(2):197-211. PubMed ID: 16288845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manganese biomining: A review.
    Das AP; Sukla LB; Pradhan N; Nayak S
    Bioresour Technol; 2011 Aug; 102(16):7381-7. PubMed ID: 21632238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review.
    Cárdenas JP; Quatrini R; Holmes DS
    Res Microbiol; 2016 Sep; 167(7):529-38. PubMed ID: 27394987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation.
    Navarro CA; von Bernath D; Jerez CA
    Biol Res; 2013; 46(4):363-71. PubMed ID: 24510139
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative evaluation of microbial and chemical leaching processes for heavy metal removal from dewatered metal plating sludge.
    Bayat B; Sari B
    J Hazard Mater; 2010 Feb; 174(1-3):763-9. PubMed ID: 19880247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feasibility of bioleaching integrated with a chemical oxidation process for improved leaching of valuable metals from refinery spent hydroprocessing catalyst.
    Pathak A; Rana MS; Al-Sheeha H; Navvmani R; Al-Enezi HM; Al-Sairafi S; Mishra J
    Environ Sci Pollut Res Int; 2022 May; 29(23):34288-34301. PubMed ID: 35038087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioleaching of Copper-Containing Electroplating Sludge.
    Sun J; Zhou W; Zhang L; Cheng H; Wang Y; Tang R; Zhou H
    J Environ Manage; 2021 May; 285():112133. PubMed ID: 33607564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Indirect bioleaching recovery of valuable metals from electroplating sludge and optimization of various parameters using response surface methodology (RSM).
    Tian B; Cui Y; Qin Z; Wen L; Li Z; Chu H; Xin B
    J Environ Manage; 2022 Jun; 312():114927. PubMed ID: 35358844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Arsenopyrite and pyrite bioleaching: evidence from XPS, XRD and ICP techniques.
    Fantauzzi M; Licheri C; Atzei D; Loi G; Elsener B; Rossi G; Rossi A
    Anal Bioanal Chem; 2011 Oct; 401(7):2237-48. PubMed ID: 21847529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.