These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 36677581)

  • 1. Activity-Dependent Fluctuations in Interstitial [K
    Beswick-Jones H; Hopper AJ; Brown AM
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Astrocyte membrane responses and potassium accumulation during neuronal activity.
    Meeks JP; Mennerick S
    Hippocampus; 2007; 17(11):1100-8. PubMed ID: 17853441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of potassium by nonmyelinating Schwann cells induced by axonal activity.
    Robert A; Jirounek P
    J Neurophysiol; 1994 Dec; 72(6):2570-9. PubMed ID: 7897474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations.
    Kager H; Wadman WJ; Somjen GG
    J Neurophysiol; 2000 Jul; 84(1):495-512. PubMed ID: 10899222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resilience of compound action potential peaks to high-frequency firing in the mouse optic nerve.
    Hopper AJ; Beswick-Jones H; Brown AM
    Physiol Rep; 2023 Feb; 11(4):e15606. PubMed ID: 36807847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Posttetanic hyperpolarization produced by electrogenic Na(+)-K+ pump in lizard axons impaled near their motor terminals.
    Morita K; David G; Barrett JN; Barrett EF
    J Neurophysiol; 1993 Nov; 70(5):1874-84. PubMed ID: 8294960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular potassium activity during frequency-dependent conduction block of giant axons in the metathoracic ganglion of the cockroach.
    Grossman Y; Gutnick MJ
    Brain Res; 1981 Apr; 211(1):196-201. PubMed ID: 7225836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissipation of transmembrane potassium gradient is the main cause of cerebral ischemia-induced depolarization in astrocytes and neurons.
    Du Y; Wang W; Lutton AD; Kiyoshi CM; Ma B; Taylor AT; Olesik JW; McTigue DM; Askwith CC; Zhou M
    Exp Neurol; 2018 May; 303():1-11. PubMed ID: 29407729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of neuronal hyperexcitability caused by partial inhibition of Na+-K+-ATPases in the rat CA1 hippocampal region.
    Vaillend C; Mason SE; Cuttle MF; Alger BE
    J Neurophysiol; 2002 Dec; 88(6):2963-78. PubMed ID: 12466422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that action potentials activate an internodal potassium conductance in lizard myelinated axons.
    David G; Barrett JN; Barrett EF
    J Physiol; 1992 Jan; 445():277-301. PubMed ID: 1501136
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of membrane potential on calcium efflux from giant axons of Loligo.
    Allen TJ; Baker PF
    J Physiol; 1986 Sep; 378():77-96. PubMed ID: 3795113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potassium efflux in heart muscle during activity: extracellular accumulation and its implications.
    Kline RP; Morad M
    J Physiol; 1978 Jul; 280():537-58. PubMed ID: 308540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of elevated K(+), hypotonic stress, and cortical spreading depression on astrocyte swelling in GFAP-deficient mice.
    Anderová M; Kubinová S; Mazel T; Chvátal A; Eliasson C; Pekny M; Syková E
    Glia; 2001 Sep; 35(3):189-203. PubMed ID: 11494410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Internodal potassium currents can generate ectopic impulses in mammalian myelinated axons.
    Kapoor R; Smith KJ; Felts PA; Davies M
    Brain Res; 1993 May; 611(1):165-9. PubMed ID: 8518945
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic changes and alterations in the size of the extracellular space during epileptic activity.
    Lux HD; Heinemann U; Dietzel I
    Adv Neurol; 1986; 44():619-39. PubMed ID: 3518349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hyperglycaemic hypoxia alters after-potential and fast K+ conductance of rat axons by cytoplasmic acidification.
    Schneider U; Quasthoff S; Mitrović N; Grafe P
    J Physiol; 1993 Jun; 465():679-97. PubMed ID: 8229857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion channels in spinal cord astrocytes in vitro. I. Transient expression of high levels of Na+ and K+ channels.
    Sontheimer H; Black JA; Ransom BR; Waxman SG
    J Neurophysiol; 1992 Oct; 68(4):985-1000. PubMed ID: 1331358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons.
    Baker PF; Blaustein MP; Keynes RD; Manil J; Shaw TI; Steinhardt RA
    J Physiol; 1969 Feb; 200(2):459-96. PubMed ID: 5812424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dissection of the myelinated axon.
    Waxman SG; Ritchie JM
    Ann Neurol; 1993 Feb; 33(2):121-36. PubMed ID: 7679565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of the effects of potassium and membrane potential on the calcium-dependent sodium efflux in squid axons.
    Allen TJ; Baker PF
    J Physiol; 1986 Sep; 378():53-76. PubMed ID: 3795112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.