BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 36677867)

  • 1. Structural Analysis and Classification of Low-Molecular-Weight Hyaluronic Acid by Near-Infrared Spectroscopy: A Comparison between Traditional Machine Learning and Deep Learning.
    Tian W; Zang L; Nie L; Li L; Zhong L; Guo X; Huang S; Zang H
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near infrared spectroscopy quantification based on Bi-LSTM and transfer learning for new scenarios.
    Tan A; Wang Y; Zhao Y; Wang B; Li X; Wang AX
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Dec; 283():121759. PubMed ID: 35985223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative Assessment of Resting-State for Mild Cognitive Impairment Detection: A Functional Near-Infrared Spectroscopy and Deep Learning Approach.
    Yang D; Hong KS
    J Alzheimers Dis; 2021; 80(2):647-663. PubMed ID: 33579839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Water pH Using Visible Near-Infrared Spectroscopy and One-Dimensional Convolutional Neural Network.
    Li D; Li L
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Rapid Non-Destructive Differentiation of Different Varieties of Rice by Fluorescence Hyperspectral Technology Combined with Machine Learning.
    Kang Z; Fan R; Zhan C; Wu Y; Lin Y; Li K; Qing R; Xu L
    Molecules; 2024 Feb; 29(3):. PubMed ID: 38338424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precision in wheat flour classification: Harnessing the power of deep learning and two-dimensional correlation spectrum (2DCOS).
    Zhang T; Wang Y; Sun J; Liang J; Wang B; Xu X; Xu J; Liu L
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jun; 314():124112. PubMed ID: 38518439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-destructive detection and classification of textile fibres based on hyperspectral imaging and 1D-CNN.
    Huang J; He H; Lv R; Zhang G; Zhou Z; Wang X
    Anal Chim Acta; 2022 Sep; 1224():340238. PubMed ID: 35998989
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-Infrared Hyperspectral Imaging Combined with Deep Learning to Identify Cotton Seed Varieties.
    Zhu S; Zhou L; Gao P; Bao Y; He Y; Feng L
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31500333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Authenticity identification and classification of Rhodiola species in traditional Tibetan medicine based on Fourier transform near-infrared spectroscopy and chemometrics analysis.
    Li T; Su C
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Nov; 204():131-140. PubMed ID: 29925045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Classification Accuracy with Integrated Contextual Gate Network: Deep Learning Approach for Functional Near-Infrared Spectroscopy Brain-Computer Interface Application.
    Akhter J; Naseer N; Nazeer H; Khan H; Mirtaheri P
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793895
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of opium from Afghanistan and Myanmar by infrared spectroscopy coupled with machine learning methods.
    Liu CM; Liu XY; Du Y; Hua ZD
    Forensic Sci Int; 2024 Apr; 357():111974. PubMed ID: 38447346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing Machine Learning and PLSDA Algorithms for Durian Pulp Classification Using Inline NIR Spectra.
    Pokhrel DR; Sirisomboon P; Khurnpoon L; Posom J; Saechua W
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of Bacterial Blight Resistant Rice Seeds Using Terahertz Imaging and Hyperspectral Imaging Combined With Convolutional Neural Network.
    Zhang J; Yang Y; Feng X; Xu H; Chen J; He Y
    Front Plant Sci; 2020; 11():821. PubMed ID: 32670316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapidly detecting fennel origin of the near-infrared spectroscopy based on extreme learning machine.
    Zuo E; Sun L; Yan J; Chen C; Chen C; Lv X
    Sci Rep; 2022 Aug; 12(1):13593. PubMed ID: 35948651
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of structurally related commercial contrast media by near infrared spectroscopy.
    Yip WL; Soosainather TC; Dyrstad K; Sande SA
    J Pharm Biomed Anal; 2014 Mar; 90():148-60. PubMed ID: 24374816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analyzing Classification Performance of fNIRS-BCI for Gait Rehabilitation Using Deep Neural Networks.
    Hamid H; Naseer N; Nazeer H; Khan MJ; Khan RA; Shahbaz Khan U
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination of Trichosanthis Fructus from Different Geographical Origins Using Near Infrared Spectroscopy Coupled with Chemometric Techniques.
    Xu L; Sun W; Wu C; Ma Y; Chao Z
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31010152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of cumin and fennel from different regions based on generative adversarial networks and near infrared spectroscopy.
    Yang B; Chen C; Chen F; Chen C; Tang J; Gao R; Lv X
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 260():119956. PubMed ID: 34049008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance comparison of deep learning and machine learning methods in determining wetland water areas using EuroSAT dataset.
    Günen MA
    Environ Sci Pollut Res Int; 2022 Mar; 29(14):21092-21106. PubMed ID: 34746985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.