BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36677903)

  • 1. DEML: Drug Synergy and Interaction Prediction Using Ensemble-Based Multi-Task Learning.
    Wang Z; Dong J; Wu L; Dai C; Wang J; Wen Y; Zhang Y; Yang X; He S; Bo X
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting anticancer synergistic drug combinations based on multi-task learning.
    Chen D; Wang X; Zhu H; Jiang Y; Li Y; Liu Q; Liu Q
    BMC Bioinformatics; 2023 Nov; 24(1):448. PubMed ID: 38012551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A social theory-enhanced graph representation learning framework for multitask prediction of drug-drug interactions.
    Feng YH; Zhang SW; Feng YY; Zhang QQ; Shi MH; Shi JY
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In silico drug combination discovery for personalized cancer therapy.
    Jeon M; Kim S; Park S; Lee H; Kang J
    BMC Syst Biol; 2018 Mar; 12(Suppl 2):16. PubMed ID: 29560824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-type feature fusion based on graph neural network for drug-drug interaction prediction.
    He C; Liu Y; Li H; Zhang H; Mao Y; Qin X; Liu L; Zhang X
    BMC Bioinformatics; 2022 Jun; 23(1):224. PubMed ID: 35689200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction.
    Liu X; Song C; Liu S; Li M; Zhou X; Zhang W
    Bioinformatics; 2022 Oct; 38(20):4782-4789. PubMed ID: 36000898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving therapeutic synergy score predictions with adverse effects using multi-task heterogeneous network learning.
    Yue Y; Liu Y; Hao L; Lei H; He S
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36562724
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning-based multi-drug synergy prediction model for individually tailored anti-cancer therapies.
    She S; Chen H; Ji W; Sun M; Cheng J; Rui M; Feng C
    Front Pharmacol; 2022; 13():1032875. PubMed ID: 36588694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEB-DDI: A Task-Specific Dual-View Substructural Learning Framework for Drug-Drug Interaction Prediction.
    Shen X; Li Z; Liu Y; Song B; Zeng X
    IEEE J Biomed Health Inform; 2024 Jan; 28(1):569-579. PubMed ID: 37991904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PRODeepSyn: predicting anticancer synergistic drug combinations by embedding cell lines with protein-protein interaction network.
    Wang X; Zhu H; Jiang Y; Li Y; Tang C; Chen X; Li Y; Liu Q; Liu Q
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35043159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DMFDDI: deep multimodal fusion for drug-drug interaction prediction.
    Gan Y; Liu W; Xu G; Yan C; Zou G
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37930025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. deepMDDI: A deep graph convolutional network framework for multi-label prediction of drug-drug interactions.
    Feng YH; Zhang SW; Zhang QQ; Zhang CH; Shi JY
    Anal Biochem; 2022 Jun; 646():114631. PubMed ID: 35227661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction.
    Nyamabo AK; Yu H; Shi JY
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 33951725
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SYNPRED: prediction of drug combination effects in cancer using different synergy metrics and ensemble learning.
    Preto AJ; Matos-Filipe P; MourĂ£o J; Moreira IS
    Gigascience; 2022 Sep; 11():. PubMed ID: 36155782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Ensemble Machine Learning Framework for the Estimation of
    Yu W; Li S; Ye T; Xu R; Song J; Guo Y
    Environ Health Perspect; 2022 Mar; 130(3):37004. PubMed ID: 35254864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MDF-SA-DDI: predicting drug-drug interaction events based on multi-source drug fusion, multi-source feature fusion and transformer self-attention mechanism.
    Lin S; Wang Y; Zhang L; Chu Y; Liu Y; Fang Y; Jiang M; Wang Q; Zhao B; Xiong Y; Wei DQ
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34671814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.
    Preuer K; Lewis RPI; Hochreiter S; Bender A; Bulusu KC; Klambauer G
    Bioinformatics; 2018 May; 34(9):1538-1546. PubMed ID: 29253077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-task learning model for predicting drugs combination synergy by analyzing drug-drug interactions and integrated multi-view graph data.
    Monem S; Hassanien AE; Abdel-Hamid AH
    Sci Rep; 2023 Dec; 13(1):22463. PubMed ID: 38105262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MCFF-MTDDI: multi-channel feature fusion for multi-typed drug-drug interaction prediction.
    Han CD; Wang CC; Huang L; Chen X
    Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37291761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A biomedical knowledge graph-based method for drug-drug interactions prediction through combining local and global features with deep neural networks.
    Ren ZH; You ZH; Yu CQ; Li LP; Guan YJ; Guo LX; Pan J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36070624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.