These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 36678013)
1. Effects of Oxygen-Containing Functional Groups on the Electrochemical Performance of Activated Carbon for EDLCs. Kim JH; Kim SH; Kim BJ; Lee HM Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678013 [TBL] [Abstract][Full Text] [Related]
2. Bamboo-Based Mesoporous Activated Carbon for High-Power-Density Electric Double-Layer Capacitors. Kim JH; Lee HM; Jung SC; Chung DC; Kim BJ Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685189 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen-Assisted Thermal Treatment of Electrode Materials for Electrochemical Double-Layer Capacitors. Gentile M; Bellani S; Zappia MI; Gamberini A; Mastronardi V; Abruzzese M; Gabatel L; Pasquale L; Marras S; Bagheri A; Beydaghi H; Papadopoulou EL; Lanzani G; Bonaccorso F ACS Appl Mater Interfaces; 2024 Mar; 16(11):13706-13718. PubMed ID: 38458613 [TBL] [Abstract][Full Text] [Related]
4. A Study on Pre-Oxidation of Petroleum Pitch-Based Activated Carbons for Electric Double-Layer Capacitors. Kim JW; Kim DW; Lee SY; Park SJ Molecules; 2022 May; 27(10):. PubMed ID: 35630718 [TBL] [Abstract][Full Text] [Related]
5. Correlation of EDLC Capacitance with Physical Properties of Polyethylene Terephthalate Added Pitch-Based Activated Carbon. Kwak CH; Kim D; Bai BC Molecules; 2022 Feb; 27(4):. PubMed ID: 35209241 [TBL] [Abstract][Full Text] [Related]
6. Hierarchically Porous Carbon Networks Derived from Chitosan for High-Performance Electrochemical Double-Layer Capacitors. Park KH; Byun S; Ko B; Hong WG; Kim J; Lee D; Shim WG; Song SH Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999315 [TBL] [Abstract][Full Text] [Related]
7. Exploring the Capacitive Behavior of Carbon Functionalized with Cyclic Ethers: A Rational Strategy To Exploit Oxygen Functional Groups for Enhanced Capacitive Performance. Lee J; Abbas MA; Bang JH ACS Appl Mater Interfaces; 2019 Apr; 11(15):14126-14135. PubMed ID: 30901192 [TBL] [Abstract][Full Text] [Related]
8. Enhanced Electrochemical Performance of Supercapacitors via Atomic Layer Deposition of ZnO on the Activated Carbon Electrode Material. Wu C; Zhang F; Xiao X; Chen J; Sun J; Gandla D; Ein-Eli Y; Tan DQ Molecules; 2021 Jul; 26(14):. PubMed ID: 34299463 [TBL] [Abstract][Full Text] [Related]
9. A Holey Graphene Additive for Boosting Performance of Electric Double-Layer Supercapacitors. Huang JB; Patra J; Lin MH; Ger MD; Liu YM; Pu NW; Hsieh CT; Youh MJ; Dong QF; Chang JK Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32244627 [TBL] [Abstract][Full Text] [Related]
10. Comparison of Pore Structures of Cellulose-Based Activated Carbon Fibers and Their Applications for Electrode Materials. Kim JH; Jung SC; Lee HM; Kim BJ Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35409039 [TBL] [Abstract][Full Text] [Related]
11. CMK-5-Based High Energy Density Electrical Double Layer Capacitor for AC Line Filtering. Ji N; Park J; Kim W ACS Omega; 2019 Nov; 4(20):18900-18907. PubMed ID: 31737851 [TBL] [Abstract][Full Text] [Related]
12. Gamma-induced interconnected networks in microporous activated carbons from palm petiole under NaNO Benwannamas N; Sangtawesin T; Yilmaz M; Kanjana K Sci Rep; 2023 Aug; 13(1):12887. PubMed ID: 37558768 [TBL] [Abstract][Full Text] [Related]
13. High Density 3D Carbon Tube Nanoarray Electrode Boosting the Capacitance of Filter Capacitor. Chen G; Han F; Ma H; Li P; Zhou Z; Wang P; Li X; Meng G; Wei B Nanomicro Lett; 2024 Jul; 16(1):235. PubMed ID: 38958813 [TBL] [Abstract][Full Text] [Related]
14. Flexible Graphene/Carbon Nanotube Electrochemical Double-Layer Capacitors with Ultrahigh Areal Performance. Romano V; Martín-García B; Bellani S; Marasco L; Kumar Panda J; Oropesa-Nuñez R; Najafi L; Del Rio Castillo AE; Prato M; Mantero E; Pellegrini V; D'Angelo G; Bonaccorso F Chempluschem; 2019 Jul; 84(7):882-892. PubMed ID: 31943980 [TBL] [Abstract][Full Text] [Related]
15. Electric double-layer capacitance of carbon nanocages. Tadokoro M; Tsumeda S; Tsuhara N; Nakayama H; Miyazato Y; Tamamitsu K; Vinu A; Ariga K J Nanosci Nanotechnol; 2009 Jan; 9(1):391-5. PubMed ID: 19441324 [TBL] [Abstract][Full Text] [Related]
16. Characterization of activated biomass carbon from tea leaf for supercapacitor applications. Thirumal V; Yuvakkumar R; Ravi G; Dineshkumar G; Ganesan M; Alotaibi SH; Velauthapillai D Chemosphere; 2022 Mar; 291(Pt 2):132931. PubMed ID: 34793843 [TBL] [Abstract][Full Text] [Related]
17. Microscopic Insights into the Electrochemical Behavior of Nonaqueous Electrolytes in Electric Double-Layer Capacitors. Jiang DE; Wu J J Phys Chem Lett; 2013 Apr; 4(8):1260-7. PubMed ID: 26282139 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres. Sarma B; Jurovitzki AL; Ray RS; Smith YR; Mohanty SK; Misra M Nanotechnology; 2015 Jul; 26(26):265401. PubMed ID: 26057179 [TBL] [Abstract][Full Text] [Related]
19. Ionic liquid-assisted synthesis of chitin-ethylene glycol hydrogels as electrolyte membranes for sustainable electrochemical capacitors. Wysokowski M; Nowacki K; Jaworski F; Niemczak M; Bartczak P; Sandomierski M; Piasecki A; Galiński M; Jesionowski T Sci Rep; 2022 May; 12(1):8861. PubMed ID: 35614197 [TBL] [Abstract][Full Text] [Related]
20. High Electrochemical Performance from Oxygen Functional Groups Containing Porous Activated Carbon Electrode of Supercapacitors. Yang W; Li Y; Feng Y Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30518048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]