These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 36678038)

  • 21. Probing Confinement Effects on the Infrared Spectra of Water with Deep Potential Molecular Dynamics Simulations.
    Calegari Andrade MF; Pham TA
    J Phys Chem Lett; 2023 Jun; 14(24):5560-5566. PubMed ID: 37294927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermal transpiration through single walled carbon nanotubes and graphene channels.
    Thekkethala JF; Sathian SP
    J Chem Phys; 2013 Nov; 139(17):174712. PubMed ID: 24206327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermodynamics of fluid conduction through hydrophobic channel of carbon nanotubes: the exciting force for filling of nanotubes with polar and nonpolar fluids.
    Sahu P; Ali SM; Shenoy KT
    J Chem Phys; 2015 Feb; 142(7):074501. PubMed ID: 25702017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the Origin of Water Flow through Carbon Nanotubes.
    Su J; Yang K
    Chemphyschem; 2015 Nov; 16(16):3488-92. PubMed ID: 26346506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High Interfacial Barriers at Narrow Carbon Nanotube-Water Interfaces.
    Varanasi SR; Subramanian Y; Bhatia SK
    Langmuir; 2018 Jul; 34(27):8099-8111. PubMed ID: 29905485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effects of confinement inside carbon nanotubes on catalysis.
    Pan X; Bao X
    Acc Chem Res; 2011 Aug; 44(8):553-62. PubMed ID: 21707038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anomalous hydration shell order of Na+ and K+ inside carbon nanotubes.
    Shao Q; Zhou J; Lu L; Lu X; Zhu Y; Jiang S
    Nano Lett; 2009 Mar; 9(3):989-94. PubMed ID: 19206198
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evidence of Formation of 1-10 nm Diameter Ice Nanotubes in Double-Walled Carbon Nanotube Capillaries.
    Liu Y; Jiang J; Pu Y; Francisco JS; Zeng XC
    ACS Nano; 2023 Apr; 17(7):6922-6931. PubMed ID: 36940168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Water boiling inside carbon nanotubes: toward efficient drug release.
    Chaban VV; Prezhdo OV
    ACS Nano; 2011 Jul; 5(7):5647-55. PubMed ID: 21648482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular Dynamics Study of an Atactic Poly(methyl methacrylate)-Carbon Nanotube Nanocomposite.
    Skountzos EN; Mermigkis PG; Mavrantzas VG
    J Phys Chem B; 2018 Sep; 122(38):9007-9021. PubMed ID: 30169039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Density, distribution, and orientation of water molecules inside and outside carbon nanotubes.
    Thomas JA; McGaughey AJ
    J Chem Phys; 2008 Feb; 128(8):084715. PubMed ID: 18315080
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Highly selective adsorption of methanol in carbon nanotubes immersed in methanol-water solution.
    Zhao WH; Shang B; Du SP; Yuan LF; Yang J; Zeng XC
    J Chem Phys; 2012 Jul; 137(3):034501. PubMed ID: 22830705
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamics and density profile of water in nanotubes as one-dimensional fluid.
    Liu Y; Wang Q; Zhang L; Wu T
    Langmuir; 2005 Dec; 21(25):12025-30. PubMed ID: 16316148
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ab initio molecular dynamics simulations of aqueous triflic acid confined in carbon nanotubes.
    Clark JK; Habenicht BF; Paddison SJ
    Phys Chem Chem Phys; 2014 Aug; 16(31):16465-79. PubMed ID: 24983213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the influence of the external electric fields on water viscosity inside carbon nanotubes.
    Farrokhbin M; Lohrasebi A
    Eur Phys J E Soft Matter; 2023 Oct; 46(10):93. PubMed ID: 37812291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of hydrogen bonds on diffusion mechanism of water inside single-walled carbon nanotubes.
    Chen Q; Wang Q; Liu YC; Wu T
    J Chem Phys; 2014 Jun; 140(21):214507. PubMed ID: 24908026
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dissociation of nitramide and methylnitramine when confined inside armchair single-walled carbon nanotubes.
    Wang L; Zou H; Yi C; Xu J; Xu W
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3298-305. PubMed ID: 21776700
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibrational energy transfer between carbon nanotubes and liquid water: a molecular dynamics study.
    Nelson TR; Chaban VV; Kalugin ON; Prezhdo OV
    J Phys Chem B; 2010 Apr; 114(13):4609-14. PubMed ID: 20230009
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anisotropy of the water-carbon interaction: molecular simulations of water in low-diameter carbon nanotubes.
    Pérez-Hernández G; Schmidt B
    Phys Chem Chem Phys; 2013 Apr; 15(14):4995-5006. PubMed ID: 23443614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unraveling Flow Separation at the Water-Carbon Nanotube Interface: An Atomic-Scale Overview by Molecular Dynamics Simulation.
    Foroutan M; Fadaei Naeini V; Alibalazadeh M
    Langmuir; 2022 Apr; 38(14):4256-4265. PubMed ID: 35360900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.