BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36678612)

  • 1. BIreactive: Expanding the Scope of Reactivity Predictions to Propynamides.
    Hermann MR; Tautermann CS; Sieger P; Grundl MA; Weber A
    Pharmaceuticals (Basel); 2023 Jan; 16(1):. PubMed ID: 36678612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the Armory: Predicting and Tuning Covalent Warhead Reactivity.
    Lonsdale R; Burgess J; Colclough N; Davies NL; Lenz EM; Orton AL; Ward RA
    J Chem Inf Model; 2017 Dec; 57(12):3124-3137. PubMed ID: 29131621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BIreactive: A Machine-Learning Model to Estimate Covalent Warhead Reactivity.
    Palazzesi F; Hermann MR; Grundl MA; Pautsch A; Seeliger D; Tautermann CS; Weber A
    J Chem Inf Model; 2020 Jun; 60(6):2915-2923. PubMed ID: 32250627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The expanding repertoire of covalent warheads for drug discovery.
    Mehta NV; Degani MS
    Drug Discov Today; 2023 Dec; 28(12):103799. PubMed ID: 37839776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative reactivity analysis of small-molecule thiol surrogates.
    Petri L; Ábrányi-Balogh P; Varga PR; Imre T; Keserű GM
    Bioorg Med Chem; 2020 Apr; 28(7):115357. PubMed ID: 32081630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophilic warheads in covalent drug discovery: an overview.
    Péczka N; Orgován Z; Ábrányi-Balogh P; Keserű GM
    Expert Opin Drug Discov; 2022 Apr; 17(4):413-422. PubMed ID: 35129005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent inhibitor reactivity prediction by the electrophilicity index-in and out of scope.
    Hermann MR; Pautsch A; Grundl MA; Weber A; Tautermann CS
    J Comput Aided Mol Des; 2021 Apr; 35(4):531-539. PubMed ID: 33015740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Fast Ab Initio Predictor Tool for Covalent Reactivity Estimation of Acrylamides.
    Palazzesi F; Grundl MA; Pautsch A; Weber A; Tautermann CS
    J Chem Inf Model; 2019 Aug; 59(8):3565-3571. PubMed ID: 31246457
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A road map for prioritizing warheads for cysteine targeting covalent inhibitors.
    Ábrányi-Balogh P; Petri L; Imre T; Szijj P; Scarpino A; Hrast M; Mitrović A; Fonovič UP; Németh K; Barreteau H; Roper DI; Horváti K; Ferenczy GG; Kos J; Ilaš J; Gobec S; Keserű GM
    Eur J Med Chem; 2018 Dec; 160():94-107. PubMed ID: 30321804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterising covalent warhead reactivity.
    Martin JS; MacKenzie CJ; Fletcher D; Gilbert IH
    Bioorg Med Chem; 2019 May; 27(10):2066-2074. PubMed ID: 30975501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Covalent Docking in Drug Discovery: Scope and Limitations.
    Scarpino A; Ferenczy GG; Keserű GM
    Curr Pharm Des; 2020; 26(44):5684-5699. PubMed ID: 33155894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactivities of acrylamide warheads toward cysteine targets: a QM/ML approach to covalent inhibitor design.
    Danilack AD; Dickson CJ; Soylu C; Fortunato M; Rodde S; Munkler H; Hornak V; Duca JS
    J Comput Aided Mol Des; 2024 May; 38(1):21. PubMed ID: 38693331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vinylpyridine as a Tunable Covalent Warhead Targeting C797 in EGFR.
    Pemberton N; Compagne N; Argyrou A; Evertsson E; Gunnarsson A; Kettle JG; Orme JP; Ward RA
    ACS Med Chem Lett; 2024 May; 15(5):583-589. PubMed ID: 38746885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding Mode Prediction and Virtual Screening Applications by Covalent Docking.
    Scarpino A; Ferenczy GG; Keserű GM
    Methods Mol Biol; 2021; 2266():73-88. PubMed ID: 33759121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitriles: an attractive approach to the development of covalent inhibitors.
    Bonatto V; Lameiro RF; Rocho FR; Lameira J; Leitão A; Montanari CA
    RSC Med Chem; 2023 Feb; 14(2):201-217. PubMed ID: 36846367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Descriptors for Predicting and Understanding the Structure-Activity Relationships of Michael Acceptor Warheads.
    Liu R; Vázquez-Montelongo EA; Ma S; Shen J
    J Chem Inf Model; 2023 Aug; 63(15):4912-4923. PubMed ID: 37463342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic Exploration of Privileged Warheads for Covalent Kinase Drug Discovery.
    Zhao Z; Bourne PE
    Pharmaceuticals (Basel); 2022 Oct; 15(11):. PubMed ID: 36355497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug discovery for a new generation of covalent drugs.
    Kalgutkar AS; Dalvie DK
    Expert Opin Drug Discov; 2012 Jul; 7(7):561-81. PubMed ID: 22607458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent progress in covalent warheads for in vivo targeting of endogenous proteins.
    Shindo N; Ojida A
    Bioorg Med Chem; 2021 Oct; 47():116386. PubMed ID: 34509863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An electrophilic warhead library for mapping the reactivity and accessibility of tractable cysteines in protein kinases.
    Petri L; Egyed A; Bajusz D; Imre T; Hetényi A; Martinek T; Ábrányi-Balogh P; Keserű GM
    Eur J Med Chem; 2020 Dec; 207():112836. PubMed ID: 32971426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.