These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36678716)

  • 41. [Establishment and biological effect evaluation of prevascularized porous β-tricalcium phosphate tissue engineered bone].
    Huang M; Fan J; Ma Z; Li J; Lu Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2022 May; 36(5):625-632. PubMed ID: 35570639
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bifunctional Hydrogel-Integrated 3D Printed Scaffold for Repairing Infected Bone Defects.
    Zhang Q; Zhou X; Du H; Ha Y; Xu Y; Ao R; He C
    ACS Biomater Sci Eng; 2023 Aug; 9(8):4583-4596. PubMed ID: 37318182
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Mesoporous silica nanoparticles/gelatin porous composite scaffolds with localized and sustained release of vancomycin for treatment of infected bone defects.
    Zhou X; Weng W; Chen B; Feng W; Wang W; Nie W; Chen L; Mo X; Su J; He C
    J Mater Chem B; 2018 Feb; 6(5):740-752. PubMed ID: 32254261
    [TBL] [Abstract][Full Text] [Related]  

  • 44. 3D printed poly(ε-caprolactone) scaffolds function with simvastatin-loaded poly(lactic-co-glycolic acid) microspheres to repair load-bearing segmental bone defects.
    Zhang ZZ; Zhang HZ; Zhang ZY
    Exp Ther Med; 2019 Jan; 17(1):79-90. PubMed ID: 30651767
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model.
    Wang DX; He Y; Bi L; Qu ZH; Zou JW; Pan Z; Fan JJ; Chen L; Dong X; Liu XN; Pei GX; Ding JD
    Int J Nanomedicine; 2013; 8():1855-65. PubMed ID: 23690683
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [Preparation and osteogenic properties of poly (
    Chen S; Du C
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1123-1130. PubMed ID: 30701727
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D gel-printed porous magnesium scaffold coated with dibasic calcium phosphate dihydrate for bone repair in vivo.
    Zhang Y; Lin T; Meng H; Wang X; Peng H; Liu G; Wei S; Lu Q; Wang Y; Wang A; Xu W; Shao H; Peng J
    J Orthop Translat; 2022 Mar; 33():13-23. PubMed ID: 35198379
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In Vitro Mechanical and Biological Properties of 3D Printed Polymer Composite and β-Tricalcium Phosphate Scaffold on Human Dental Pulp Stem Cells.
    Cao S; Han J; Sharma N; Msallem B; Jeong W; Son J; Kunz C; Kang HW; Thieringer FM
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32650530
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3D printing of metal-organic framework incorporated porous scaffolds to promote osteogenic differentiation and bone regeneration.
    Zhong L; Chen J; Ma Z; Feng H; Chen S; Cai H; Xue Y; Pei X; Wang J; Wan Q
    Nanoscale; 2020 Dec; 12(48):24437-24449. PubMed ID: 33305769
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bacterial inhibition potential of 3D rapid-prototyped magnesium-based porous composite scaffolds--an in vitro efficacy study.
    Ma R; Lai YX; Li L; Tan HL; Wang JL; Li Y; Tang TT; Qin L
    Sci Rep; 2015 Sep; 5():13775. PubMed ID: 26346217
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In vitro and in vivo osteogenic activity of the novel vancomycin-loaded bone-like hydroxyapatite/poly(amino acid) scaffold.
    Cao Z; Jiang D; Yan L; Wu J
    J Biomater Appl; 2016 May; 30(10):1566-77. PubMed ID: 26686585
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Engineered 3D-Printed Polyvinyl Alcohol Scaffolds Incorporating β-Tricalcium Phosphate and Icariin Induce Bone Regeneration in Rat Skull Defect Model.
    Xu Z; Sun Y; Dai H; Ma Y; Bing H
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889410
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The incorporation of β-tricalcium phosphate nanoparticles within silk fibroin composite scaffolds for enhanced bone regeneration: An in vitro and in vivo study.
    Jing T; Yi Liu ; Xu L; Chen C; Liu F
    J Biomater Appl; 2022 Apr; 36(9):1567-1578. PubMed ID: 35135370
    [TBL] [Abstract][Full Text] [Related]  

  • 55. One-Step Preparation of an AgNP-nHA@RGO Three-Dimensional Porous Scaffold and Its Application in Infected Bone Defect Treatment.
    Weng W; Li X; Nie W; Liu H; Liu S; Huang J; Zhou Q; He J; Su J; Dong Z; Wang D
    Int J Nanomedicine; 2020; 15():5027-5042. PubMed ID: 32764934
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration.
    Qin W; Li C; Liu C; Wu S; Liu J; Ma J; Chen W; Zhao H; Zhao X
    J Biomater Appl; 2022 May; 36(10):1838-1851. PubMed ID: 35196910
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Degradable calcium deficient hydroxyapatite/poly(lactic-glycolic acid copolymer) bilayer scaffold through integral molding 3D printing for bone defect repair.
    Wu N; Liu J; Ma W; Dong X; Wang F; Yang D; Xu Y
    Biofabrication; 2021 Mar; 13(2):. PubMed ID: 33202398
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Local Delivery of BMP-2 from Poly(lactic-co-glycolic acid) Microspheres Incorporated into Porous Nanofibrous Scaffold for Bone Tissue Regeneration.
    Wang W; Miao Y; Zhou X; Nie W; Chen L; Liu D; Du H; He C
    J Biomed Nanotechnol; 2017 Nov; 13(11):1446-1456. PubMed ID: 31271131
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds.
    Dong J; Lin P; Putra NE; Tümer N; Leeflang MA; Huan Z; Fratila-Apachitei LE; Chang J; Zadpoor AA; Zhou J
    Acta Biomater; 2022 Oct; 151():628-646. PubMed ID: 35940565
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antimicrobial Activities of LL-37 Fragment Mutant-Poly (Lactic-Co-Glycolic) Acid Conjugate against
    Mori T; Yoshida M; Hazekawa M; Ishibashi D; Hatanaka Y; Nagao T; Kakehashi R; Kojima H; Uno R; Ozeki M; Kawasaki I; Yamashita T; Nishikawa J; Uchida T
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34065861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.