These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 36678978)
21. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: effects on the components of transmembrane transport of indol-3yl-acetic acid. Johnson CF; Morris DA Planta; 1987 Nov; 172(3):400-7. PubMed ID: 24225925 [TBL] [Abstract][Full Text] [Related]
22. Endogenous indole-3-acetamide levels contribute to the crosstalk between auxin and abscisic acid, and trigger plant stress responses in Arabidopsis. Pérez-Alonso MM; Ortiz-García P; Moya-Cuevas J; Lehmann T; Sánchez-Parra B; Björk RG; Karim S; Amirjani MR; Aronsson H; Wilkinson MD; Pollmann S J Exp Bot; 2021 Feb; 72(2):459-475. PubMed ID: 33068437 [TBL] [Abstract][Full Text] [Related]
23. The pathway of auxin biosynthesis in plants. Mano Y; Nemoto K J Exp Bot; 2012 May; 63(8):2853-72. PubMed ID: 22447967 [TBL] [Abstract][Full Text] [Related]
24. A Glyphosate-Based Herbicide in Soil Differentially Affects Hormonal Homeostasis and Performance of Non-target Crop Plants. Fuchs B; Laihonen M; Muola A; Saikkonen K; Dobrev PI; Vankova R; Helander M Front Plant Sci; 2021; 12():787958. PubMed ID: 35154181 [TBL] [Abstract][Full Text] [Related]
25. Auxin biosynthesis and its role in plant development. Zhao Y Annu Rev Plant Biol; 2010; 61():49-64. PubMed ID: 20192736 [TBL] [Abstract][Full Text] [Related]
26. Current aspects of auxin biosynthesis in plants. Kasahara H Biosci Biotechnol Biochem; 2016; 80(1):34-42. PubMed ID: 26364770 [TBL] [Abstract][Full Text] [Related]
27. Auxin-stimulated ATPase in membrane fractions from pumpkin hypocotyls (Cucurbita maxima L.). Scherer GF Planta; 1981 May; 151(5):434-8. PubMed ID: 24302108 [TBL] [Abstract][Full Text] [Related]
28. Auxin biosynthesis in the phytopathogenic fungus Leptosphaeria maculans is associated with enhanced transcription of indole-3-pyruvate decarboxylase LmIPDC2 and tryptophan aminotransferase LmTAM1. Leontovyčová H; Trdá L; Dobrev PI; Šašek V; Gay E; Balesdent MH; Burketová L Res Microbiol; 2020; 171(5-6):174-184. PubMed ID: 32540203 [TBL] [Abstract][Full Text] [Related]
29. 3-Phenyllactic acid is converted to phenylacetic acid and induces auxin-responsive root growth in Arabidopsis plants. Maki Y; Soejima H; Sugiyama T; Watahiki MK; Sato T; Yamaguchi J Plant Biotechnol (Tokyo); 2022 Jun; 39(2):111-117. PubMed ID: 35937539 [TBL] [Abstract][Full Text] [Related]
30. Auxin homeostasis: the DAO of catabolism. Zhang J; Peer WA J Exp Bot; 2017 Jun; 68(12):3145-3154. PubMed ID: 28666349 [TBL] [Abstract][Full Text] [Related]
31. Jasmonoyl-L-Tryptophan Disrupts IAA Activity through the AUX1 Auxin Permease. Staswick P; Rowe M; Spalding EP; Splitt BL Front Plant Sci; 2017; 8():736. PubMed ID: 28533791 [TBL] [Abstract][Full Text] [Related]
32. Genetic aspects of auxin biosynthesis and its regulation. Brumos J; Alonso JM; Stepanova AN Physiol Plant; 2014 May; 151(1):3-12. PubMed ID: 24007561 [TBL] [Abstract][Full Text] [Related]
33. Recent advances in auxin biosynthesis and homeostasis. Solanki M; Shukla LI 3 Biotech; 2023 Sep; 13(9):290. PubMed ID: 37547917 [TBL] [Abstract][Full Text] [Related]
34. Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Sugawara S; Hishiyama S; Jikumaru Y; Hanada A; Nishimura T; Koshiba T; Zhao Y; Kamiya Y; Kasahara H Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5430-5. PubMed ID: 19279202 [TBL] [Abstract][Full Text] [Related]
35. Auxin conjugates: their role for plant development and in the evolution of land plants. Ludwig-Müller J J Exp Bot; 2011 Mar; 62(6):1757-73. PubMed ID: 21307383 [TBL] [Abstract][Full Text] [Related]
36. Design and Construction of a Whole Cell Bacterial 4-Hydroxyphenylacetic Acid and 2-Phenylacetic Acid Bioassay. Dierckx S; Van Puyvelde S; Venken L; Eberle W; Vanderleyden J Front Bioeng Biotechnol; 2015; 3():88. PubMed ID: 26137458 [TBL] [Abstract][Full Text] [Related]
37. Preference of Arabidopsis thaliana GH3.5 acyl amido synthetase for growth versus defense hormone acyl substrates is dictated by concentration of amino acid substrate aspartate. Mackelprang R; Okrent RA; Wildermuth MC Phytochemistry; 2017 Nov; 143():19-28. PubMed ID: 28743075 [TBL] [Abstract][Full Text] [Related]
38. Overexpression of the Arabidopsis gene UPRIGHT ROSETTE reveals a homeostatic control for indole-3-acetic acid. Sun Y; Yang Y; Yuan Z; Müller JL; Yu C; Xu Y; Shao X; Li X; Decker EL; Reski R; Huang H Plant Physiol; 2010 Jul; 153(3):1311-20. PubMed ID: 20466845 [TBL] [Abstract][Full Text] [Related]
39. Indole-3-acetic acid: A widespread physiological code in interactions of fungi with other organisms. Fu SF; Wei JY; Chen HW; Liu YY; Lu HY; Chou JY Plant Signal Behav; 2015; 10(8):e1048052. PubMed ID: 26179718 [TBL] [Abstract][Full Text] [Related]
40. Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Lehmann T; Hoffmann M; Hentrich M; Pollmann S Eur J Cell Biol; 2010 Dec; 89(12):895-905. PubMed ID: 20701997 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]