These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36678978)

  • 41. Hormone crosstalk in wound stress response: wound-inducible amidohydrolases can simultaneously regulate jasmonate and auxin homeostasis in Arabidopsis thaliana.
    Zhang T; Poudel AN; Jewell JB; Kitaoka N; Staswick P; Matsuura H; Koo AJ
    J Exp Bot; 2016 Mar; 67(7):2107-20. PubMed ID: 26672615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Indole-3-Acetic Acid Produced by Burkholderia heleia Acts as a Phenylacetic Acid Antagonist to Disrupt Tropolone Biosynthesis in Burkholderia plantarii.
    Wang M; Tachibana S; Murai Y; Li L; Lau SY; Cao M; Zhu G; Hashimoto M; Hashidoko Y
    Sci Rep; 2016 Mar; 6():22596. PubMed ID: 26935539
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Indole-3-acetic acid biosynthetic pathways in the basidiomycetous yeast Rhodosporidium paludigenum.
    Nutaratat P; Srisuk N; Arunrattiyakorn P; Limtong S
    Arch Microbiol; 2016 Jul; 198(5):429-37. PubMed ID: 26899734
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Auxin and its role in plant development: structure, signalling, regulation and response mechanisms.
    Gomes GLB; Scortecci KC
    Plant Biol (Stuttg); 2021 Nov; 23(6):894-904. PubMed ID: 34396657
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An Evolutionarily Primitive and Distinct Auxin Metabolism in the Lycophyte Selaginella moellendorffii.
    Kaneko S; Cook SD; Aoi Y; Watanabe A; Hayashi KI; Kasahara H
    Plant Cell Physiol; 2020 Oct; 61(10):1724-1732. PubMed ID: 32697828
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Auxin homeostasis in maize (Zea mays) is regulated via 1-O-indole-3-acetyl-myo-inositol synthesis at early stages of seedling development and under abiotic stress.
    Ciarkowska A; Wojtaczka P; Kęsy J; Ostrowski M
    Planta; 2022 Dec; 257(1):23. PubMed ID: 36539632
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Auxins of microbial origin and their use in agriculture.
    Keswani C; Singh SP; Cueto L; García-Estrada C; Mezaache-Aichour S; Glare TR; Borriss R; Singh SP; Blázquez MA; Sansinenea E
    Appl Microbiol Biotechnol; 2020 Oct; 104(20):8549-8565. PubMed ID: 32918584
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Roles of Auxin Biosynthesis YUCCA Gene Family in Plants.
    Cao X; Yang H; Shang C; Ma S; Liu L; Cheng J
    Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31888214
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of Four Bifunctional Plant IAM/PAM-Amidohydrolases Capable of Contributing to Auxin Biosynthesis.
    Sánchez-Parra B; Frerigmann H; Alonso MM; Loba VC; Jost R; Hentrich M; Pollmann S
    Plants (Basel); 2014 Aug; 3(3):324-47. PubMed ID: 27135507
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ligand Specificity of Bean Leaf Soluble Auxin-binding Protein.
    Wardrop AJ; Polya GM
    Plant Physiol; 1980 Jul; 66(1):112-8. PubMed ID: 16661370
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Auxin Immunolocalization in Coffea canephora Tissues.
    Márquez-López RE; Ku-González Á; Méndez-Hernández HA; Galaz-Ávalos RM; Loyola-Vargas VM
    Methods Mol Biol; 2018; 1815():179-188. PubMed ID: 29981121
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis.
    Porco S; Pěnčík A; Rashed A; Voß U; Casanova-Sáez R; Bishopp A; Golebiowska A; Bhosale R; Swarup R; Swarup K; Peňáková P; Novák O; Staswick P; Hedden P; Phillips AL; Vissenberg K; Bennett MJ; Ljung K
    Proc Natl Acad Sci U S A; 2016 Sep; 113(39):11016-21. PubMed ID: 27651491
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Auxin: regulation, action, and interaction.
    Woodward AW; Bartel B
    Ann Bot; 2005 Apr; 95(5):707-35. PubMed ID: 15749753
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Roles of YUCCAs in auxin biosynthesis and drought stress responses in plants.
    Cheol Park H; Cha JY; Yun DJ
    Plant Signal Behav; 2013 Jun; 8(6):e24495. PubMed ID: 23603963
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Auxin biosynthesis.
    Zhao Y
    Arabidopsis Book; 2014; 12():e0173. PubMed ID: 24955076
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The excessive production of indole-3-acetic acid and its significance in studies of the biosynthesis of this regulator of plant growth and development.
    Kawaguchi M; Syono K
    Plant Cell Physiol; 1996 Dec; 37(8):1043-8. PubMed ID: 9032962
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Mechanism of specific inhibition of phototropism by phenylacetic Acid in corn seedling.
    Vierstra RD; Poff KL
    Plant Physiol; 1981 May; 67(5):1011-5. PubMed ID: 16661774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Crystal structure of the indole-3-acetic acid-catabolizing enzyme DAO1 from Arabidopsis thaliana.
    Jin SH; Lee H; Shin Y; Kim JH; Rhee S
    J Struct Biol; 2020 Dec; 212(3):107632. PubMed ID: 32980521
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genome-wide analysis of the GH3 family in apple (Malus × domestica).
    Yuan H; Zhao K; Lei H; Shen X; Liu Y; Liao X; Li T
    BMC Genomics; 2013 May; 14():297. PubMed ID: 23638690
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Significance of NatB-mediated N-terminal acetylation of auxin biosynthetic enzymes in maintaining auxin homeostasis in Arabidopsis thaliana.
    Liu HQ; Pu ZX; Di DW; Zou YJ; Guo YM; Wang JL; Zhang L; Tian P; Fei QH; Li XF; Khaskheli AJ; Wu L; Guo GQ
    Commun Biol; 2022 Dec; 5(1):1410. PubMed ID: 36550195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.