These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 36679155)
1. Process Design for Value-Added Products in a Biorefinery Platform from Agro and Forest Industrial Byproducts. Clauser NM; Felissia FE; Area MC; Vallejos ME Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679155 [TBL] [Abstract][Full Text] [Related]
2. Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products. Lee H; Jung Sohn Y; Jeon S; Yang H; Son J; Jin Kim Y; Jae Park S Bioresour Technol; 2023 May; 376():128879. PubMed ID: 36921642 [TBL] [Abstract][Full Text] [Related]
3. Use of agro-industrial residue from the canned pineapple industry for polyhydroxybutyrate production by Sukruansuwan V; Napathorn SC Biotechnol Biofuels; 2018; 11():202. PubMed ID: 30061924 [TBL] [Abstract][Full Text] [Related]
4. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Yaashikaa PR; Senthil Kumar P; Varjani S Bioresour Technol; 2022 Jan; 343():126126. PubMed ID: 34673193 [TBL] [Abstract][Full Text] [Related]
5. Microbial and enzymatic conversion of levulinic acid, an alternative building block to fermentable sugars from cellulosic biomass. Habe H; Sato Y; Kirimura K Appl Microbiol Biotechnol; 2020 Sep; 104(18):7767-7775. PubMed ID: 32770274 [TBL] [Abstract][Full Text] [Related]
6. Bioprospecting microbial hosts to valorize lignocellulose biomass - Environmental perspectives and value-added bioproducts. Lu H; Yadav V; Bilal M; Iqbal HMN Chemosphere; 2022 Feb; 288(Pt 2):132574. PubMed ID: 34656619 [TBL] [Abstract][Full Text] [Related]
8. Integral multi-valorization of agro-industrial wastes: A review. Prado-Acebo I; Cubero-Cardoso J; Lu-Chau TA; Eibes G Waste Manag; 2024 Jun; 183():42-52. PubMed ID: 38714121 [TBL] [Abstract][Full Text] [Related]
9. Use of residual banana for polyhydroxybutyrate (PHB) production: case of study in an integrated biorefinery. Naranjo JM; Cardona CA; Higuita JC Waste Manag; 2014 Dec; 34(12):2634-40. PubMed ID: 25277823 [TBL] [Abstract][Full Text] [Related]
10. Design of Value Chains for Microalgal Biorefinery at Industrial Scale: Process Integration and Techno-Economic Analysis. Slegers PM; Olivieri G; Breitmayer E; Sijtsma L; Eppink MHM; Wijffels RH; Reith JH Front Bioeng Biotechnol; 2020; 8():550758. PubMed ID: 33015014 [TBL] [Abstract][Full Text] [Related]
11. Technical Evaluation of a Levulinic Acid Plant Based on Biomass Transformation under Techno-Economic and Exergy Analyses. Meramo Hurtado SI; Puello P; Cabarcas A ACS Omega; 2021 Mar; 6(8):5627-5641. PubMed ID: 33681602 [TBL] [Abstract][Full Text] [Related]
12. One-pot bioprocess for lactic acid production from lignocellulosic agro-wastes by using ionic liquid stable Lactobacillus brevis. Grewal J; Khare SK Bioresour Technol; 2018 Mar; 251():268-273. PubMed ID: 29288954 [TBL] [Abstract][Full Text] [Related]
13. Polyhydroxybutyrate production from dark-fermentative effluent and composite grafting with bagasse derived α-cellulose in a biorefinery approach. Kumar AN; Katakojwala R; Amulya K; Mohan SV Chemosphere; 2021 Sep; 279():130563. PubMed ID: 34134408 [TBL] [Abstract][Full Text] [Related]
14. Biorefineries based on coffee cut-stems and sugarcane bagasse: furan-based compounds and alkanes as interesting products. Aristizábal M V; Gómez P Á; Cardona A CA Bioresour Technol; 2015 Nov; 196():480-9. PubMed ID: 26280100 [TBL] [Abstract][Full Text] [Related]
15. Techno-economic assessment of a sustainable and cost-effective bioprocess for large scale production of polyhydroxybutyrate. Manikandan NA; Pakshirajan K; Pugazhenthi G Chemosphere; 2021 Dec; 284():131371. PubMed ID: 34323807 [TBL] [Abstract][Full Text] [Related]
16. Use of carbohydrate-directed enzymes for the potential exploitation of sugarcane bagasse to obtain value-added biotechnological products. Antoniêto ACC; Nogueira KMV; Mendes V; Maués DB; Oshiquiri LH; Zenaide-Neto H; de Paula RG; Gaffey J; Tabatabaei M; Gupta VK; Silva RN Int J Biol Macromol; 2022 Nov; 221():456-471. PubMed ID: 36070819 [TBL] [Abstract][Full Text] [Related]
17. Lignocellulosic Biomass Valorization for Bioethanol Production: a Circular Bioeconomy Approach. Devi A; Bajar S; Kour H; Kothari R; Pant D; Singh A Bioenergy Res; 2022; 15(4):1820-1841. PubMed ID: 35154558 [TBL] [Abstract][Full Text] [Related]
18. Techno-Economic Analysis of 2,3-Butanediol Production from Sugarcane Bagasse. Gadkari S; Narisetty V; Maity SK; Manyar H; Mohanty K; Jeyakumar RB; Pant KK; Kumar V ACS Sustain Chem Eng; 2023 Jun; 11(22):8337-8349. PubMed ID: 37292450 [TBL] [Abstract][Full Text] [Related]
19. Influence of green solvent on levulinic acid production from lignocellulosic paper waste. Dutta S; Yu IKM; Tsang DCW; Su Z; Hu C; Wu KCW; Yip ACK; Ok YS; Poon CS Bioresour Technol; 2020 Feb; 298():122544. PubMed ID: 31838242 [TBL] [Abstract][Full Text] [Related]
20. Bioreactors for lignocellulose conversion into fermentable sugars for production of high added value products. Liguori R; Ventorino V; Pepe O; Faraco V Appl Microbiol Biotechnol; 2016 Jan; 100(2):597-611. PubMed ID: 26572518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]