These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 36679215)

  • 1. Lifetime Predictions for High-Density Polyethylene under Creep: Experiments and Modeling.
    Drozdov AD; Høj Jermiin R; de Claville Christiansen J
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679215
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Tensile Creep Behavior for High-Density Polyethylene (HDPE) via Experiments and Mathematical Model.
    Mao Q; Su B; Ma R; Li Z
    Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermo-Mechanical Behavior of Poly(ether ether ketone): Experiments and Modeling.
    Drozdov AD; deClaville Christiansen J
    Polymers (Basel); 2021 May; 13(11):. PubMed ID: 34071593
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compression Creep and Thermal Ratcheting Behavior of High Density Polyethylene (HDPE).
    Kanthabhabha Jeya RP; Bouzid AH
    Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexural Creep Behavior of High-Density Polyethylene Lumber and Wood Plastic Composite Lumber Made from Thermally Modified Wood.
    Alrubaie MAA; Lopez-Anido RA; Gardner DJ
    Polymers (Basel); 2020 Jan; 12(2):. PubMed ID: 31991599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Investigation and Modeling of Damage Accumulation of EN-AW 2024 Aluminum Alloy under Creep Condition at Elevated Temperature.
    Tomczyk A; Seweryn A
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33467471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compressive Properties and Constitutive Model of Semicrystalline Polyethylene.
    Zhang K; Li W; Zheng Y; Yao W; Zhao C
    Polymers (Basel); 2021 Aug; 13(17):. PubMed ID: 34502934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlations between Microscale Indentation Creep and Macroscale Tensile Creep of Polymers.
    Slouf M; Steinhart M; Nemecek P; Gajdosova V; Hodan J
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Constitutive Equations for Analyzing Stress Relaxation and Creep of Viscoelastic Materials Based on Standard Linear Solid Model Derived with Finite Loading Rate.
    Lin CY; Chen YC; Lin CH; Chang KV
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35632006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal, creep-recovery and viscoelastic behavior of high density polyethylene/hydroxyapatite nano particles for bone substitutes: effects of gamma radiation.
    Alothman OY; Fouad H; Al-Zahrani SM; Eshra A; Al Rez MF; Ansari SG
    Biomed Eng Online; 2014 Aug; 13():125. PubMed ID: 25168723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical Properties, Short Time Creep, and Fatigue of an Austenitic Steel.
    Brnic J; Turkalj G; Canadija M; Lanc D; Krscanski S; Brcic M; Li Q; Niu J
    Materials (Basel); 2016 Apr; 9(4):. PubMed ID: 28773424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predictive Mechanistic Model of Creep Response of Single-Layered Pressure-Sensitive Adhesive (PSA) Joints.
    Huang H; Dasgupta A; Singh N
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensile creep mechanical behavior of periodontal ligament: A hyper-viscoelastic constitutive model.
    Zhou J; Song Y; Shi X; Zhang C
    Comput Methods Programs Biomed; 2021 Aug; 207():106224. PubMed ID: 34146838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strain Rate-Dependent Hyperbolic Constitutive Model for Tensile Behavior of PE100 Pipe Material.
    Li Y; Luo W; Li M; Yang B; Liu X
    Polymers (Basel); 2022 Mar; 14(7):. PubMed ID: 35406231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic Damage Characteristics of Asphalt Mixtures Using Fractional Rheology.
    Zhang Q; Gu X; Yu Z; Liang J; Dong Q
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creep behavior of bagasse fiber reinforced polymer composites.
    Xu Y; Wu Q; Lei Y; Yao F
    Bioresour Technol; 2010 May; 101(9):3280-6. PubMed ID: 20064712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Depth and rate dependent mechanical behaviors for articular cartilage: experiments and theoretical predictions.
    Gao LL; Zhang CQ; Gao H; Liu ZD; Xiao PP
    Mater Sci Eng C Mater Biol Appl; 2014 May; 38():244-51. PubMed ID: 24656375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Activation Energy of Strain Bursts during Nanoindentation Creep on Polyethylene.
    Ghomsheh MZ; Khatibi G
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental data from service-like creep-fatigue experiments on grade P92 steel.
    Sonntag N; Jürgens M; Uhlemann P; Skrotzki B; Olbricht J
    Data Brief; 2023 Aug; 49():109333. PubMed ID: 37409176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic properties of demineralized dentin matrix.
    Pashley DH; Agee KA; Wataha JC; Rueggeberg F; Ceballos L; Itou K; Yoshiyama M; Carvalho RM; Tay FR
    Dent Mater; 2003 Dec; 19(8):700-6. PubMed ID: 14511727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.