These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36679294)

  • 1. Fabrication and Thermal Performance of a Polymer-Based Flexible Oscillating Heat Pipe via 3D Printing Technology.
    Han Z; Chang C
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat Transfer Performance of 3D-Printed Aluminium Flat-Plate Oscillating Heat Pipes for the Thermal Management of LEDs.
    Chang C; Yang Y; Pei L; Han Z; Xiao X; Ji Y
    Micromachines (Basel); 2022 Nov; 13(11):. PubMed ID: 36422378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printed aluminum flat heat pipes with micro grooves for efficient thermal management of high power LEDs.
    Chang C; Han Z; He X; Wang Z; Ji Y
    Sci Rep; 2021 Apr; 11(1):8255. PubMed ID: 33859317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat Transfer Performance of a 3D-Printed Aluminum Flat-Plate Oscillating Heat Pipe Finned Radiator.
    Xiao X; He Y; Wang Q; Yang Y; Chang C; Ji Y
    Nanomaterials (Basel); 2023 Dec; 14(1):. PubMed ID: 38202515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical review on renewable battery thermal management system using heat pipes.
    Afzal A; Abdul Razak RK; Mohammed Samee AD; Kumar R; Ağbulut Ü; Park SG
    J Therm Anal Calorim; 2023 May; ():1-40. PubMed ID: 37361725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental data on Helically Coiled Oscillating Heat Pipe (HCOHP) design and thermal performance.
    Yeboah SK; Darkwa J
    Data Brief; 2020 Dec; 33():106505. PubMed ID: 33241098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualization and Heat Transfer Performance of Mini-Grooved Flat Heat Pipe Filled with Different Working Fluids.
    Xin F; Lyu Q; Tian W
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical and thermal performances of multistage flexible thermal control device: A case study in cylindrical heat pipe.
    Liu M; Fan X; Liu J; Li P; Zheng Y; Chen Z; Huang J
    Heliyon; 2024 Jun; 10(11):e32169. PubMed ID: 38912478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigations of Li-Ion Battery Thermal Management Systems Based on Heat Pipes: A Review.
    Wu H; Niu M; Shao Y; Wang M; Li M; Liu X; Li Z
    ACS Omega; 2024 Jan; 9(1):97-116. PubMed ID: 38222571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of, Optimization of, and Experimentation with Small Heat Pipes Produced Using Selective Laser Melting Technology.
    Zhou J; Teng L; Shen Y; Jin Z
    Materials (Basel); 2023 Oct; 16(21):. PubMed ID: 37959545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Experimental Study of a Composite Wick Structure for Ultra-Thin Flattened Heat Pipes.
    Zhou W; Yang Y; He J; Chen R; Jian Y; Shao D; Wu A
    Micromachines (Basel); 2024 Jun; 15(6):. PubMed ID: 38930734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal and Visual Observation of Water and Acetone Oscillating Heat Pipes.
    Wilson C; Borgmeyer B; Winholtz RA; Ma HB; Jacobson D; Hussey D
    J Heat Transfer; 2011 Jun; 133(6):. PubMed ID: 34857974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Volume-Metallization 3D-Printed Polymer Composites.
    Yu D; Chi G; Mao X; Li M; Wang Z; Xing C; Hu D; Zhou Q; Li Z; Li C; Deng Z; Chen D; Song Z; He Z
    Adv Mater; 2024 Aug; 36(35):e2403088. PubMed ID: 39003616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic Copper Forest Wick Enables High Thermal Conductivity Ultrathin Heat Pipe.
    Luo JL; Mo DC; Wang YQ; Lyu SS
    ACS Nano; 2021 Apr; 15(4):6614-6621. PubMed ID: 33792288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in printed flexible heaters for portable and wearable thermal management.
    Liu Q; Tian B; Liang J; Wu W
    Mater Horiz; 2021 Jun; 8(6):1634-1656. PubMed ID: 34846496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat Transport Capability and Fluid Flow Neutron Radiography of Three-Dimensional Oscillating Heat Pipes.
    Borgmeyer B; Wilson C; Winholtz RA; Ma HB; Jacobson D; Hussey D
    J Heat Transfer; 2010 Jun; 132(6):. PubMed ID: 34876707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of Micro CT based method for porosity estimation of sintered-wick heat pipes.
    Agustina D; Putra N
    Heliyon; 2023 Mar; 9(3):e13936. PubMed ID: 36925538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Transfer Characteristics of Flat Plate Micro Heat Pipe with Copper Spiral Woven Mesh and a Copper Foam Composite Wick.
    Zhang Y; Zhao Z; Luo C; Zhang D
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental study on the thermal performance of ultra-thin flat heat pipes with novel multiscale striped composite wick structures.
    Wang M; Yang Y; Sun Y; Li J; Hao M
    Heliyon; 2023 Oct; 9(10):e20840. PubMed ID: 37867792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multimaterial Three-Dimensional Printing of Ultraviolet-Curable Ionic Conductive Elastomers with Diverse Polymers for Multifunctional Flexible Electronics.
    He X; Cheng J; Li Z; Ye H; Wei X; Li H; Wang R; Zhang YF; Yang HY; Guo C; Ge Q
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3455-3466. PubMed ID: 36538002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.