These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36679401)

  • 1. Exploration of Effective Time-Velocity Distribution for Doppler-Radar-Based Personal Gait Identification Using Deep Learning.
    Shioiri K; Saho K
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Biometric Human Identification Using Radar Deep Transfer Learning.
    Alkasimi A; Shepard T; Wagner S; Pancrazio S; Pham AV; Gardner C; Funsten B
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Doppler signal analysis techniques for velocity waveform, turbulence and vortex measurement: a simulation study.
    Wang Y; Fish PJ
    Ultrasound Med Biol; 1996; 22(5):635-49. PubMed ID: 8865559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SP-WVD with Adaptive-Filter-Bank-Supported RF Sensor for Low RCS Targets' Nonlinear Micro-Doppler Signature/Pattern Imaging System.
    Kumawat HC; Raj AAB
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative Analysis of Audio Processing Techniques on Doppler Radar Signature of Human Walking Motion Using CNN Models.
    Ha MK; Phan TL; Nguyen DHH; Quan NH; Ha-Phan NQ; Ching CTS; Hieu NV
    Sensors (Basel); 2023 Oct; 23(21):. PubMed ID: 37960447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Doppler Radar System for In-Home Gait Characterization using Wavelet Transform Analysis.
    Soubra R; Chkeir A; Mourad-Chehade F; Alshamaa D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6081-6084. PubMed ID: 31947232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of carotid disease with the application of STFT and CWT methods.
    Hardalaç F; Yildirim H; Serhatlioğlu S
    Comput Biol Med; 2007 Jun; 37(6):785-92. PubMed ID: 16997292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral broadening of ophthalmic arterial Doppler signals using STFT and wavelet transform.
    Ubeyli ED; Güler I
    Comput Biol Med; 2004 Jun; 34(4):345-54. PubMed ID: 15121004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foot Gesture Recognition Using High-Compression Radar Signature Image and Deep Learning.
    Song S; Kim B; Kim S; Lee J
    Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34200461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of Micro-Doppler Radar to Classify Gait Patterns of Young and Elderly Adults: An Approach Using a Long Short-Term Memory Network.
    Hayashi S; Saho K; Shioiri K; Fujimoto M; Masugi M
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34073806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of the wavelet and short-time fourier transforms for Doppler spectral analysis.
    Zhang Y; Guo Z; Wang W; He S; Lee T; Loew M
    Med Eng Phys; 2003 Sep; 25(7):547-57. PubMed ID: 12835067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Unobtrusive In-Home Gait Analysis Based on Radar Micro-Doppler Signatures.
    Seifert AK; Amin MG; Zoubir AM
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2629-2640. PubMed ID: 30668460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal Convolutional Neural Networks for Radar Micro-Doppler Based Gait Recognition.
    Addabbo P; Bernardi ML; Biondi F; Cimitile M; Clemente C; Orlando D
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of wavelet scalogram of blood flow ultrasonic Doppler signal].
    Zhang P; Liu Y; Liu ZY; Shen Y; Yu JH
    Space Med Med Eng (Beijing); 2000 Apr; 13(2):119-23. PubMed ID: 11543050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STFT or CWT for the detection of Doppler ultrasound embolic signals.
    Gonçalves IB; Leiria A; Moura MM
    Int J Numer Method Biomed Eng; 2013 Sep; 29(9):964-76. PubMed ID: 23576393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human Activity Recognition Based on Deep Learning and Micro-Doppler Radar Data.
    Tan TH; Tian JH; Sharma AK; Liu SH; Huang YF
    Sensors (Basel); 2024 Apr; 24(8):. PubMed ID: 38676149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Application of Analytic Wavelet Transform and Convolutional Neural Network for Radar Intrapulse Modulation Recognition.
    Walenczykowska M; Kawalec A; Krenc K
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Target Doppler Rate Estimation Based on the Complex Phase of STFT in Passive Forward Scattering Radar.
    Abratkiewicz K; Krysik P; Gajo Z; Samczyński P
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31434325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pedestrian and Animal Recognition Using Doppler Radar Signature and Deep Learning.
    Buchman D; Drozdov M; Krilavičius T; Maskeliūnas R; Damaševičius R
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extraction and Validation of Biomechanical Gait Parameters with Contactless FMCW Radar.
    Wang L; Ni Z; Huang B
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.