These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36679467)

  • 1. Virtual Stiffness: A Novel Biomechanical Approach to Estimate Limb Stiffness of a Multi-Muscle and Multi-Joint System.
    Borzelli D; Pastorelli S; d'Avella A; Gastaldi L
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle patterns underlying voluntary modulation of co-contraction.
    Borzelli D; Cesqui B; Berger DJ; Burdet E; d'Avella A
    PLoS One; 2018; 13(10):e0205911. PubMed ID: 30339703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multijoint upper limb torque estimation from sEMG measurements.
    Bueno DR; Montano L
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7233-6. PubMed ID: 24111414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals.
    Osu R; Gomi H
    J Neurophysiol; 1999 Apr; 81(4):1458-68. PubMed ID: 10200182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoelectric Control Systems for Upper Limb Wearable Robotic Exoskeletons and Exosuits-A Systematic Review.
    Fu J; Choudhury R; Hosseini SM; Simpson R; Park JH
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365832
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Expertise on Shoulder and Upper Limb Kinematics, Electromyography, and Estimated Muscle Forces During a Lifting Task.
    Goubault E; Martinez R; Assila N; Monga-Dubreuil É; Dowling-Medley J; Dal Maso F; Begon M
    Hum Factors; 2022 Aug; 64(5):800-819. PubMed ID: 33236930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Upper limb muscle forces during a simple reach-to-grasp movement: a comparative study.
    Louis N; Gorce P
    Med Biol Eng Comput; 2009 Nov; 47(11):1173-9. PubMed ID: 19784682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-based estimation of active knee stiffness.
    Pfeifer S; Hardegger M; Vallery H; List R; Foresti M; Riener R; Perreault EJ
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975474. PubMed ID: 22275672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous control of natural and extra degrees of freedom by isometric force and electromyographic activity in the muscle-to-force null space.
    Gurgone S; Borzelli D; de Pasquale P; Berger DJ; Lisini Baldi T; D'Aurizio N; Prattichizzo D; d'Avella A
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34983036
    [No Abstract]   [Full Text] [Related]  

  • 13. Muscle co-contraction in an upper limb musculoskeletal model: EMG-assisted vs. standard load-sharing.
    Sarshari E; Mancuso M; Terrier A; Farron A; Mullhaupt P; Pioletti D
    Comput Methods Biomech Biomed Engin; 2021 Feb; 24(2):137-150. PubMed ID: 33945354
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of movement onset using EMG signals for upper-limb exoskeletons in reaching tasks.
    Trigili E; Grazi L; Crea S; Accogli A; Carpaneto J; Micera S; Vitiello N; Panarese A
    J Neuroeng Rehabil; 2019 Mar; 16(1):45. PubMed ID: 30922326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, control and validation of the variable stiffness exoskeleton FLExo.
    Mghames S; Laghi M; Della Santina C; Garabini M; Catalano M; Grioli G; Bicchi A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():539-546. PubMed ID: 28813876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Continuous Estimation of Human Multi-Joint Angles From sEMG Using a State-Space Model.
    Ding Q; Han J; Zhao X
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1518-1528. PubMed ID: 28113324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trunk muscle contributions of to L4-5 joint rotational stiffness following sudden trunk lateral bend perturbations.
    Cort JA; Dickey JP; Potvin JR
    J Electromyogr Kinesiol; 2013 Dec; 23(6):1334-42. PubMed ID: 24148963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast orthogonal search method to estimate upper arm Hill-based muscle model parameters.
    Mountjoy KC; Hashtrudi-Zaad K; Morin EL
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():3720-5. PubMed ID: 19163520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Surface Electromyography to Estimate End-Point Force in Redundant Systems: Comparison between Linear Approaches.
    Borzelli D; Gurgone S; De Pasquale P; Lotti N; d'Avella A; Gastaldi L
    Bioengineering (Basel); 2023 Feb; 10(2):. PubMed ID: 36829728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.