These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36679490)

  • 1. Acoustic Emission and Artificial Intelligence Procedure for Crack Source Localization.
    Melchiorre J; Manuello Bertetto A; Rosso MM; Marano GC
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep Learning Approaches for Robust Time of Arrival Estimation in Acoustic Emission Monitoring.
    Zonzini F; Bogomolov D; Dhamija T; Testoni N; De Marchi L; Marzani A
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crack-Length Estimation for Structural Health Monitoring Using the High-Frequency Resonances Excited by the Energy Release during Fatigue-Crack Growth.
    Joseph R; Mei H; Migot A; Giurgiutiu V
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.
    Kral Z; Horn W; Steck J
    ScientificWorldJournal; 2013; 2013():823603. PubMed ID: 24023536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and Analysis of Acoustic Emission Generated by Fatigue Cracking.
    Mu W; Gao Y; Wang Y; Liu G; Hu H
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analytical and Experimental Study of Fatigue-Crack-Growth AE Signals in Thin Sheet Metals.
    Joseph R; Giurgiutiu V
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33076412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strict-Feedback Backstepping Digital Twin and Machine Learning Solution in AE Signals for Bearing Crack Identification.
    Piltan F; Toma RN; Shon D; Im K; Choi HK; Yoo DS; Kim JM
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative Investigation of Acoustic Emission Waveform Parameters from Crack Opening in a Rail Section Using Clustering Algorithms and Advanced Signal Processing.
    Mahajan H; Banerjee S
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of piezoelectric wafer active sensor for acoustic emission sensing.
    Bhuiyan Y; Lin B; Giurgiutiu V
    Ultrasonics; 2019 Feb; 92():35-49. PubMed ID: 30218898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic Emission Source Characterisation during Fatigue Crack Growth in Al 2024-T3 Specimens.
    Yao X; Vien BS; Davies C; Chiu WK
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Method for Pipeline Leak Detection Based on Acoustic Imaging and Deep Learning.
    Ahmad S; Ahmad Z; Kim CH; Kim JM
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnosis of COVID-19 via acoustic analysis and artificial intelligence by monitoring breath sounds on smartphones.
    Chen Z; Li M; Wang R; Sun W; Liu J; Li H; Wang T; Lian Y; Zhang J; Wang X
    J Biomed Inform; 2022 Jun; 130():104078. PubMed ID: 35489595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A semi-automatic processing technique for elastic-wave laboratory data.
    Sarout J; Ferjani M; Guéguen Y
    Ultrasonics; 2009 May; 49(4-5):452-8. PubMed ID: 19144368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep neural networks for crack detection inside structures.
    Moreh F; Lyu H; Rizvi ZH; Wuttke F
    Sci Rep; 2024 Feb; 14(1):4439. PubMed ID: 38396171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiphysics Simulation of Low-Amplitude Acoustic Wave Detection by Piezoelectric Wafer Active Sensors Validated by In-Situ AE-Fatigue Experiment.
    Bhuiyan MY; Giurgiutiu V
    Materials (Basel); 2017 Aug; 10(8):. PubMed ID: 28817081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Location of Tensile Damage Source of Carbon Fiber Braided Composites Based on Two-Step Method.
    Ding G; Xiu C; Wan Z; Li J; Pei X; Zheng Z
    Molecules; 2019 Sep; 24(19):. PubMed ID: 31569440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic emission characteristics and fracture mechanism of cemented tailings backfill under uniaxial compression: experimental and numerical study.
    Cheng A; Zhou Y; Chen G; Huang S; Ye Z
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55143-55157. PubMed ID: 36890404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust sound event detection in bioacoustic sensor networks.
    Lostanlen V; Salamon J; Farnsworth A; Kelling S; Bello JP
    PLoS One; 2019; 14(10):e0214168. PubMed ID: 31647815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Learning Based Monitoring of Spatter Behavior by the Acoustic Signal in Selective Laser Melting.
    Luo S; Ma X; Xu J; Li M; Cao L
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated cell-type classification combining dilated convolutional neural networks with label-free acoustic sensing.
    Jeon HJ; Lim HG; Shung KK; Lee OJ; Kim MG
    Sci Rep; 2022 Nov; 12(1):19873. PubMed ID: 36400803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.