These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36679543)

  • 1. Deep Instance Segmentation and Visual Servoing to Play Jenga with a Cost-Effective Robotic System.
    Marchionna L; Pugliese G; Martini M; Angarano S; Salvetti F; Chiaberge M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control framework for dexterous manipulation using dynamic visual servoing and tactile sensors' feedback.
    Jara CA; Pomares J; Candelas FA; Torres F
    Sensors (Basel); 2014 Jan; 14(1):1787-804. PubMed ID: 24451466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. See, feel, act: Hierarchical learning for complex manipulation skills with multisensory fusion.
    Fazeli N; Oller M; Wu J; Wu Z; Tenenbaum JB; Rodriguez A
    Sci Robot; 2019 Jan; 4(26):. PubMed ID: 33137764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Kalman filtering cooperated Elman neural network learning for vision-sensing-based robotic manipulation with global stability.
    Zhong X; Zhong X; Peng X
    Sensors (Basel); 2013 Oct; 13(10):13464-86. PubMed ID: 24108426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visual servoing in medical robotics: a survey. Part I: endoscopic and direct vision imaging - techniques and applications.
    Azizian M; Khoshnam M; Najmaei N; Patel RV
    Int J Med Robot; 2014 Sep; 10(3):263-74. PubMed ID: 24106103
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual Servoing Pushing Control of the Soft Robot with Active Pushing Force Regulation.
    Xu F; Wang H; Liu Z; Chen W; Wang Y
    Soft Robot; 2022 Aug; 9(4):690-704. PubMed ID: 34468220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Autonomous detection and sorting of litter using deep learning and soft robotic grippers.
    Almanzor E; Anvo NR; Thuruthel TG; Iida F
    Front Robot AI; 2022; 9():1064853. PubMed ID: 36530497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intelligent Spacecraft Visual GNC Architecture With the State-Of-the-Art AI Components for On-Orbit Manipulation.
    Hao Z; Shyam RBA; Rathinam A; Gao Y
    Front Robot AI; 2021; 8():639327. PubMed ID: 34141728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an autonomous biological cell manipulator with single-cell electroporation and visual servoing capabilities.
    Sakaki K; Dechev N; Burke RD; Park EJ
    IEEE Trans Biomed Eng; 2009 Aug; 56(8):2064-74. PubMed ID: 19605307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mask then classify: multi-instance segmentation for surgical instruments.
    Kurmann T; Márquez-Neila P; Allan M; Wolf S; Sznitman R
    Int J Comput Assist Radiol Surg; 2021 Jul; 16(7):1227-1236. PubMed ID: 34143374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multi-sensorial hybrid control for robotic manipulation in human-robot workspaces.
    Pomares J; Perea I; García GJ; Jara CA; Corrales JA; Torres F
    Sensors (Basel); 2011; 11(10):9839-62. PubMed ID: 22163729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survey of visual and force/tactile control of robots for physical interaction in Spain.
    Garcia GJ; Corrales JA; Pomares J; Torres F
    Sensors (Basel); 2009; 9(12):9689-733. PubMed ID: 22303146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual Sensor Fusion Based Autonomous Robotic System for Assistive Drinking.
    Try P; Schöllmann S; Wöhle L; Gebhard M
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intravascular Tracking of Micro-Agents Using Medical Ultrasound: Towards Clinical Applications.
    Suligoj F; Heunis CM; Mohanty S; Misra S
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3739-3747. PubMed ID: 35604994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic arm enhancement to accommodate improved efficiency and decreased resource utilization in complex minimally invasive surgical procedures.
    Geis WP; Kim HC; Brennan EJ; McAfee PC; Wang Y
    Stud Health Technol Inform; 1996; 29():471-81. PubMed ID: 10172847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of health behaviors on community well-being and resilience: teaching K-12 students with Jenga!
    Wehmanen KW; Cottet-Puinel FE; Hampton TC; Hamlin GT; Wedig IJ; Elmer SJ
    Adv Physiol Educ; 2023 Jun; 47(2):361-365. PubMed ID: 37022970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Digital Twin for a Multifunctional Technology of Flexible Assembly on a Mechatronics Line with Integrated Robotic Systems and Mobile Visual Sensor-Challenges towards Industry 5.0.
    Mincă E; Filipescu A; Cernega D; Șolea R; Filipescu A; Ionescu D; Simion G
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer of Learning from Vision to Touch: A Hybrid Deep Convolutional Neural Network for Visuo-Tactile 3D Object Recognition.
    Rouhafzay G; Cretu AM; Payeur P
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust feature tracking on the beating heart for a robotic-guided endoscope.
    Elhawary H; Popovic A
    Int J Med Robot; 2011 Dec; 7(4):459-68. PubMed ID: 22113979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. GR-ConvNet v2: A Real-Time Multi-Grasp Detection Network for Robotic Grasping.
    Kumra S; Joshi S; Sahin F
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.