These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 36679579)

  • 1. Fight Fire with Fire: Detecting Forest Fires with Embedded Machine Learning Models Dealing with Audio and Images on Low Power IoT Devices.
    Peruzzi G; Pozzebon A; Van Der Meer M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a deep learning-based surveillance system for forest fire detection and monitoring using UAV.
    Shamta I; Demir BE
    PLoS One; 2024; 19(3):e0299058. PubMed ID: 38470887
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early Stage Forest Fire Detection from Himawari-8 AHI Images Using a Modified MOD14 Algorithm Combined with Machine Learning.
    Maeda N; Tonooka H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GIS-Based Forest Fire Susceptibility Zonation with IoT Sensor Network Support, Case Study-Nature Park Golija, Serbia.
    Novkovic I; Markovic GB; Lukic D; Dragicevic S; Milosevic M; Djurdjic S; Samardzic I; Lezaic T; Tadic M
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forest fire detection system using wireless sensor networks and machine learning.
    Dampage U; Bandaranayake L; Wanasinghe R; Kottahachchi K; Jayasanka B
    Sci Rep; 2022 Jan; 12(1):46. PubMed ID: 34996960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of forest fires and pollutant plume dispersion using IoT air quality sensors.
    Lertsinsrubtavee A; Kanabkaew T; Raksakietisak S
    Environ Pollut; 2023 Dec; 338():122701. PubMed ID: 37804907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early Detection of Forest Fire Using Mixed Learning Techniques and UAV.
    Kasyap VL; Sumathi D; Alluri K; Reddy Ch P; Thilakarathne N; Shafi RM
    Comput Intell Neurosci; 2022; 2022():3170244. PubMed ID: 35855796
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing and reinitializing wildland fire simulations through satellite active fire data.
    Cardil A; Monedero S; Ramírez J; Silva CA
    J Environ Manage; 2019 Feb; 231():996-1003. PubMed ID: 30602261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in Forest Fire Prevention: A Comprehensive Survey.
    Carta F; Zidda C; Putzu M; Loru D; Anedda M; Giusto D
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the forest fire risk zones using artificial intelligence with risk factors data.
    Sevinç V
    Environ Sci Pollut Res Int; 2023 Jan; 30(2):4721-4732. PubMed ID: 35974271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-ignited fires result in more extreme fire behavior and ecosystem impacts.
    Hantson S; Andela N; Goulden ML; Randerson JT
    Nat Commun; 2022 May; 13(1):2717. PubMed ID: 35581218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades--an overview.
    Zhang JH; Yao FM; Liu C; Yang LM; Boken VK
    Int J Environ Res Public Health; 2011 Aug; 8(8):3156-78. PubMed ID: 21909297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forest fire probability under ENSO conditions in a semi-arid region: a case study in Guanajuato.
    Farfán M; Dominguez C; Espinoza A; Jaramillo A; Alcántara C; Maldonado V; Tovar I; Flamenco A
    Environ Monit Assess; 2021 Oct; 193(10):684. PubMed ID: 34599681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Applicability of mixed effect model in the prediction of forest fire].
    Zhang Z; Yang S; Zhu H; Wang GY; Guo FT; Sun SC
    Ying Yong Sheng Tai Xue Bao; 2022 Jun; 33(6):1547-1554. PubMed ID: 35729132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forest fire susceptibility assessment under small sample scenario: A semi-supervised learning approach using transductive support vector machine.
    Ma T; Wang G; Guo R; Chen L; Ma J
    J Environ Manage; 2024 May; 359():120966. PubMed ID: 38677225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Video Surveillance-Based Fire and Smoke Classification Using Attentional Feature Map in Capsule Networks.
    Shakhnoza M; Sabina U; Sevara M; Cho YI
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region.
    Harvey BJ; Donato DC; Turner MG
    Ecology; 2016 Sep; 97(9):2272-2282. PubMed ID: 27859087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Satellite-based ensemble intelligent approach for predicting forest fire: a case of the Hyrcanian forest in Iran.
    Asadollah SBHS; Sharafati A; Motta D
    Environ Sci Pollut Res Int; 2024 Mar; 31(15):22830-22846. PubMed ID: 38409386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can wildland fire management alter 21st-century subalpine fire and forests in Grand Teton National Park, Wyoming, USA?
    Hansen WD; Abendroth D; Rammer W; Seidl R; Turner MG
    Ecol Appl; 2020 Mar; 30(2):e02030. PubMed ID: 31674698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Few-Shot Fine-Grained Forest Fire Smoke Recognition Based on Metric Learning.
    Sun B; Cheng P; Huang Y
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.