These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36679593)

  • 1. Dean-Flow Affected Lateral Focusing and Separation of Particles and Cells in Periodically Inhomogeneous Microfluidic Channels.
    Bányai A; Farkas E; Jankovics H; Székács I; Tóth EL; Vonderviszt F; Horváth R; Varga M; Fürjes P
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometry-Dependent Efficiency of Dean-Flow Affected Lateral Particle Focusing and Separation in Periodically Inhomogeneous Microfluidic Channels.
    Bányai A; Tóth EL; Varga M; Fürjes P
    Sensors (Basel); 2022 May; 22(9):. PubMed ID: 35591164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells.
    Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH
    Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sheathless focusing of microbeads and blood cells based on hydrophoresis.
    Choi S; Song S; Choi C; Park JK
    Small; 2008 May; 4(5):634-41. PubMed ID: 18383190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dean Flow Dynamics in Low-Aspect Ratio Spiral Microchannels.
    Nivedita N; Ligrani P; Papautsky I
    Sci Rep; 2017 Mar; 7():44072. PubMed ID: 28281579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inertial focusing in microfluidics.
    Martel JM; Toner M
    Annu Rev Biomed Eng; 2014 Jul; 16():371-96. PubMed ID: 24905880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation and Enrichment of Yeast
    Liu P; Liu H; Yuan D; Jang D; Yan S; Li M
    Anal Chem; 2021 Jan; 93(3):1586-1595. PubMed ID: 33289547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Double-Mode Microparticle Manipulation by Tunable Secondary Flow in Microchannel With Arc-Shaped Groove Arrays.
    Zhao Q; Yan S; Yuan D; Zhang J; Du H; Alici G; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1406-1412. PubMed ID: 28809710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impedance-based viscoelastic flow cytometry.
    Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C
    Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel.
    Yuan D; Yadav S; Ta HT; Fallahi H; An H; Kashaninejad N; Ooi CH; Nguyen NT; Zhang J
    Electrophoresis; 2021 Nov; 42(21-22):2230-2237. PubMed ID: 34396540
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic Separation and Enrichment of
    Zhang T; Cain AK; Semenec L; Liu L; Hosokawa Y; Inglis DW; Yalikun Y; Li M
    Anal Chem; 2023 Jan; 95(4):2561-2569. PubMed ID: 36656064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing particle focusing: a comparative experimental study of modified square wave and square wave microchannels in lift and Dean vortex regimes.
    Ashkani A; Jafari A; Ghomsheh MJ; Dumas N; Funfschilling D
    Sci Rep; 2024 Feb; 14(1):2679. PubMed ID: 38302543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of a Dielectrophoretic Tapered Aluminum Microelectrode Array with a Flow Focusing Technique.
    Rashid NFA; Deivasigamani R; Wee MFMR; Hamzah AA; Buyong MR
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spiral Large-Dimension Microfluidic Channel for Flow-Rate- and Particle-Size-Insensitive Focusing by the Stabilization and Acceleration of Secondary Flow.
    Shen S; Zhao L; Bai H; Zhang Y; Niu Y; Tian C; Chan H
    Anal Chem; 2024 Jan; 96(4):1750-1758. PubMed ID: 38215439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dean flow-coupled inertial focusing in curved channels.
    Ramachandraiah H; Ardabili S; Faridi AM; Gantelius J; Kowalewski JM; Mårtensson G; Russom A
    Biomicrofluidics; 2014 May; 8(3):034117. PubMed ID: 25379077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.