These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36679611)

  • 21. Life cycle assessment of battery electric vehicles: Implications of future electricity mix and different battery end-of-life management.
    Koroma MS; Costa D; Philippot M; Cardellini G; Hosen MS; Coosemans T; Messagie M
    Sci Total Environ; 2022 Jul; 831():154859. PubMed ID: 35358517
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Life cycle environmental assessment of lithium-ion and nickel metal hydride batteries for plug-in hybrid and battery electric vehicles.
    Majeau-Bettez G; Hawkins TR; Strømman AH
    Environ Sci Technol; 2011 May; 45(10):4548-54. PubMed ID: 21506538
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Addressing the range anxiety of battery electric vehicles with charging en route.
    Chakraborty P; Parker R; Hoque T; Cruz J; Du L; Wang S; Bhunia S
    Sci Rep; 2022 Apr; 12(1):5588. PubMed ID: 35379831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The development of a new type of rechargeable batteries based on hybrid electrolytes.
    Zhou H; Wang Y; Li H; He P
    ChemSusChem; 2010 Sep; 3(9):1009-19. PubMed ID: 20677207
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hall-effect based semi-fast AC on-board charging equipment for electric vehicles.
    Milanés-Montero MI; Gallardo-Lozano J; Romero-Cadaval E; González-Romera E
    Sensors (Basel); 2011; 11(10):9313-26. PubMed ID: 22163697
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A review of the life cycle assessment of electric vehicles: Considering the influence of batteries.
    Xia X; Li P
    Sci Total Environ; 2022 Mar; 814():152870. PubMed ID: 34990672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantifying the environmental impact of a Li-rich high-capacity cathode material in electric vehicles via life cycle assessment.
    Wang Y; Yu Y; Huang K; Chen B; Deng W; Yao Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1251-1260. PubMed ID: 27770328
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Environmental impacts of hydrometallurgical recycling and reusing for manufacturing of lithium-ion traction batteries in China.
    Jiang S; Hua H; Zhang L; Liu X; Wu H; Yuan Z
    Sci Total Environ; 2022 Mar; 811():152224. PubMed ID: 34896143
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Barriers and framework conditions for the market entry of second-life lithium-ion batteries from electric vehicles.
    Prenner S; Part F; Jung-Waclik S; Bordes A; Leonhardt R; Jandric A; Schmidt A; Huber-Humer M
    Heliyon; 2024 Sep; 10(18):e37423. PubMed ID: 39309827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncovering the in-use metal stocks and implied recycling potential in electric vehicle batteries considering cascaded use: a case study of China.
    Yang H; Song X; Zhang X; Lu B; Yang D; Li B
    Environ Sci Pollut Res Int; 2021 Sep; 28(33):45867-45878. PubMed ID: 33884548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. State of Charge Estimation of Battery Based on Neural Networks and Adaptive Strategies with Correntropy.
    Navega Vieira R; Mauricio Villanueva JM; Sales Flores TK; Tavares de Macêdo EC
    Sensors (Basel); 2022 Feb; 22(3):. PubMed ID: 35161925
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of Li-ion batteries to the environmental impact of electric vehicles.
    Notter DA; Gauch M; Widmer R; Wäger P; Stamp A; Zah R; Althaus HJ
    Environ Sci Technol; 2010 Sep; 44(17):6550-6. PubMed ID: 20695466
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Key challenges in future Li-battery research.
    Tarascon JM
    Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1923):3227-41. PubMed ID: 20566508
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Data-Driven Approach to State of Health Estimation and Prediction for a Lithium-Ion Battery Pack of Electric Buses Based on Real-World Data.
    Xu N; Xie Y; Liu Q; Yue F; Zhao D
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957319
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fire Tests on E-vehicle Battery Cells and Packs.
    Sturk D; Hoffmann L; Ahlberg Tidblad A
    Traffic Inj Prev; 2015; 16 Suppl 1():S159-64. PubMed ID: 25714114
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Batteries for electric and hybrid-electric vehicles.
    Cairns EJ; Albertus P
    Annu Rev Chem Biomol Eng; 2010; 1():299-320. PubMed ID: 22432583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Improving accuracy in state of health estimation for lithium batteries using gradient-based optimization: Case study in electric vehicle applications.
    El Marghichi M; Dangoury S; Zahrou Y; Loulijat A; Chojaa H; Banakhr FA; Mosaad MI
    PLoS One; 2023; 18(11):e0293753. PubMed ID: 37917753
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution.
    Wang S; Yu J
    Waste Manag Res; 2021 Jan; 39(1):156-164. PubMed ID: 33100173
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In situ monitoring of temperature inside lithium-ion batteries by flexible micro temperature sensors.
    Lee CY; Lee SJ; Tang MS; Chen PC
    Sensors (Basel); 2011; 11(10):9942-50. PubMed ID: 22163735
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.