BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36679622)

  • 1. Machine Learning Models for the Automatic Detection of Exercise Thresholds in Cardiopulmonary Exercising Tests: From Regression to Generation to Explanation.
    Zignoli A
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxynet: A collective intelligence that detects ventilatory thresholds in cardiopulmonary exercise tests.
    Zignoli A; Fornasiero A; Rota P; Muollo V; Peyré-Tartaruga LA; Low DA; Fontana FY; Besson D; Pühringer M; Ring-Dimitriou S; Mourot L
    Eur J Sport Sci; 2022 Mar; 22(3):425-435. PubMed ID: 33331795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expert-level classification of ventilatory thresholds from cardiopulmonary exercising test data with recurrent neural networks.
    Zignoli A; Fornasiero A; Stella F; Pellegrini B; Schena F; Biral F; Laursen PB
    Eur J Sport Sci; 2019 Oct; 19(9):1221-1229. PubMed ID: 30880591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Machine Learning to Identify Organ System Specific Limitations to Exercise via Cardiopulmonary Exercise Testing.
    Portella JJ; Andonian BJ; Brown DE; Mansur J; Wales D; West VL; Kraus WE; Hammond WE
    IEEE J Biomed Health Inform; 2022 Aug; 26(8):4228-4237. PubMed ID: 35353709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural network methods for diagnosing patient conditions from cardiopulmonary exercise testing data.
    Brown DE; Sharma S; Jablonski JA; Weltman A
    BioData Min; 2022 Aug; 15(1):16. PubMed ID: 35964102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Test-retest reliability and four-week changes in cardiopulmonary fitness in stroke patients: evaluation using a robotics-assisted tilt table.
    Saengsuwan J; Berger L; Schuster-Amft C; Nef T; Hunt KJ
    BMC Neurol; 2016 Sep; 16(1):163. PubMed ID: 27600918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Artificial intelligence in image analysis-fundamentals and new developments].
    Pouly M; Koller T; Gottfrois P; Lionetti S
    Hautarzt; 2020 Sep; 71(9):660-668. PubMed ID: 32789670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update.
    Lin E; Lin CH; Lane HY
    J Chem Inf Model; 2022 Feb; 62(4):761-774. PubMed ID: 35128926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using Machine Learning-Based Algorithms to Identify and Quantify Exercise Limitations in Clinical Practice: Are We There Yet?
    Schwendinger F; Biehler AK; Nagy-Huber M; Knaier R; Roth V; Dumitrescu D; Meyer FJ; Hager A; Schmidt-Trucksäss A
    Med Sci Sports Exerc; 2024 Feb; 56(2):159-169. PubMed ID: 37703323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensor-based machine learning for workflow detection and as key to detect expert level in laparoscopic suturing and knot-tying.
    Kowalewski KF; Garrow CR; Schmidt MW; Benner L; Müller-Stich BP; Nickel F
    Surg Endosc; 2019 Nov; 33(11):3732-3740. PubMed ID: 30790048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the interpretability of machine learning-based model for predicting hypertension.
    Elshawi R; Al-Mallah MH; Sakr S
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):146. PubMed ID: 31357998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An explainable self-attention deep neural network for detecting mild cognitive impairment using multi-input digital drawing tasks.
    Ruengchaijatuporn N; Chatnuntawech I; Teerapittayanon S; Sriswasdi S; Itthipuripat S; Hemrungrojn S; Bunyabukkana P; Petchlorlian A; Chunamchai S; Chotibut T; Chunharas C
    Alzheimers Res Ther; 2022 Aug; 14(1):111. PubMed ID: 35945568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning Algorithms in Neuroimaging: An Overview.
    Stumpo V; Kernbach JM; van Niftrik CHB; Sebök M; Fierstra J; Regli L; Serra C; Staartjes VE
    Acta Neurochir Suppl; 2022; 134():125-138. PubMed ID: 34862537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Audio-Based Drone Detection and Identification Using Deep Learning Techniques with Dataset Enhancement through Generative Adversarial Networks.
    Al-Emadi S; Al-Ali A; Al-Ali A
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MIDRC CRP10 AI interface-an integrated tool for exploring, testing and visualization of AI models.
    Gorre N; Carranza E; Fuhrman J; Li H; Madduri RK; Giger M; El Naqa I
    Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36716497
    [No Abstract]   [Full Text] [Related]  

  • 16. Transferability of artificial neural networks for clinical document classification across hospitals: A case study on abnormality detection from radiology reports.
    Hassanzadeh H; Nguyen A; Karimi S; Chu K
    J Biomed Inform; 2018 Sep; 85():68-79. PubMed ID: 30026067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Consistency of Feature Importance Algorithms for Interpretable EEG Abnormality Detection.
    Knispel F; Brenner A; Röhrig R; Weber Y; Varghese J; Kutafina E
    Stud Health Technol Inform; 2022 Aug; 296():33-40. PubMed ID: 36073486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative machine learning for de novo drug discovery: A systematic review.
    Martinelli DD
    Comput Biol Med; 2022 Jun; 145():105403. PubMed ID: 35339849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Machine Learning Approach to the Interpretation of Cardiopulmonary Exercise Tests: Development and Validation.
    Inbar O; Inbar O; Reuveny R; Segel MJ; Greenspan H; Scheinowitz M
    Pulm Med; 2021; 2021():5516248. PubMed ID: 34158976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MIDGET:Detecting differential gene expression on microarray data.
    Angelescu R; Dobrescu R
    Comput Methods Programs Biomed; 2021 Nov; 211():106418. PubMed ID: 34555591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.