These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 36679624)

  • 1. A Hardware-Friendly High-Precision CNN Pruning Method and Its FPGA Implementation.
    Sui X; Lv Q; Zhi L; Zhu B; Yang Y; Zhang Y; Tan Z
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hardware-Friendly Low-Bit Power-of-Two Quantization Method for CNNs and Its FPGA Implementation.
    Sui X; Lv Q; Bai Y; Zhu B; Zhi L; Yang Y; Tan Z
    Sensors (Basel); 2022 Sep; 22(17):. PubMed ID: 36081072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards Convolutional Neural Network Acceleration and Compression Based on
    Wei M; Zhao Y; Chen X; Li C; Lu J
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weak sub-network pruning for strong and efficient neural networks.
    Guo Q; Wu XJ; Kittler J; Feng Z
    Neural Netw; 2021 Dec; 144():614-626. PubMed ID: 34653719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive Global Power-of-Two Ternary Quantization Algorithm Based on Unfixed Boundary Thresholds.
    Sui X; Lv Q; Ke C; Li M; Zhuang M; Yu H; Tan Z
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance Acceleration of 2-D and 3-D CNNs on FPGAs Using Static Block Floating Point.
    Fan H; Liu S; Que Z; Niu X; Luk W
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4473-4487. PubMed ID: 34644253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of Convolutional Neural Network Processor Based on FPGA Resource Multiplexing Architecture.
    Yan F; Zhang Z; Liu Y; Liu J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Structured DNN Weight Pruning-Is It Beneficial in Any Platform?
    Ma X; Lin S; Ye S; He Z; Zhang L; Yuan G; Tan SH; Li Z; Fan D; Qian X; Lin X; Ma K; Wang Y
    IEEE Trans Neural Netw Learn Syst; 2022 Sep; 33(9):4930-4944. PubMed ID: 33735086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceleration of Deep Neural Network Training Using Field Programmable Gate Arrays.
    Tufa GT; Andargie FA; Bijalwan A
    Comput Intell Neurosci; 2022; 2022():8387364. PubMed ID: 36299439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auxiliary Pneumonia Classification Algorithm Based on Pruning Compression.
    Yang CP; Zhu JQ; Yan T; Su QL; Zheng LX
    Comput Math Methods Med; 2022; 2022():8415187. PubMed ID: 35898478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing Deep Learning Hardware Accelerator and Efficiency Evaluation.
    Qi Z; Chen W; Naqvi RA; Siddique K
    Comput Intell Neurosci; 2022; 2022():1291103. PubMed ID: 35875766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantization-Aware NN Layers with High-throughput FPGA Implementation for Edge AI.
    Pistellato M; Bergamasco F; Bigaglia G; Gasparetto A; Albarelli A; Boschetti M; Passerone R
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Full-Stack Acceleration of Deep Convolutional Neural Networks on FPGAs.
    Liu S; Fan H; Ferianc M; Niu X; Shi H; Luk W
    IEEE Trans Neural Netw Learn Syst; 2022 Aug; 33(8):3974-3987. PubMed ID: 33577458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FPGA-Based Hybrid-Type Implementation of Quantized Neural Networks for Remote Sensing Applications.
    Wei X; Liu W; Chen L; Ma L; Chen H; Zhuang Y
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern Classification Using Quantized Neural Networks for FPGA-Based Low-Power IoT Devices.
    Biswal MR; Delwar TS; Siddique A; Behera P; Choi Y; Ryu JY
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Post-training Quantization Method for the Design of Fixed-Point-Based FPGA/ASIC Hardware Accelerators for LSTM/GRU Algorithms.
    Rapuano E; Pacini T; Fanucci L
    Comput Intell Neurosci; 2022; 2022():9485933. PubMed ID: 35602644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FPGA-Based Vehicle Detection and Tracking Accelerator.
    Zhai J; Li B; Lv S; Zhou Q
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hardware Trojan Attacks on the Reconfigurable Interconnections of Field-Programmable Gate Array-Based Convolutional Neural Network Accelerators and a Physically Unclonable Function-Based Countermeasure Detection Technique.
    Hou J; Liu Z; Yang Z; Yang C
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38276848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Deep Neural Network Compression Methods for Edge Devices Using Weighted Score-Based Ranking Scheme.
    Ademola OA; Leier M; Petlenkov E
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymptotic Soft Filter Pruning for Deep Convolutional Neural Networks.
    He Y; Dong X; Kang G; Fu Y; Yan C; Yang Y
    IEEE Trans Cybern; 2020 Aug; 50(8):3594-3604. PubMed ID: 31478883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.