BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 3667964)

  • 1. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus.
    Bieger D; Hopkins DA
    J Comp Neurol; 1987 Aug; 262(4):546-62. PubMed ID: 3667964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcitonin gene-related peptide in nucleus ambiguus motoneurons in rat: viscerotopic organization.
    Lee BH; Lynn RB; Lee HS; Miselis RR; Altschuler SM
    J Comp Neurol; 1992 Jun; 320(4):531-43. PubMed ID: 1629403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts.
    Altschuler SM; Bao XM; Bieger D; Hopkins DA; Miselis RR
    J Comp Neurol; 1989 May; 283(2):248-68. PubMed ID: 2738198
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic architecture of nucleus ambiguus motoneurons projecting to the upper alimentary tract in the rat.
    Altschuler SM; Bao XM; Miselis RR
    J Comp Neurol; 1991 Jul; 309(3):402-14. PubMed ID: 1717520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleus ambiguus of the rabbit: cytoarchitectural subdivision and myotopical and neurotopic representations.
    Kitamura S; Nagase Y; Chen K; Shigenaga Y
    Anat Rec; 1993 Sep; 237(1):109-23. PubMed ID: 8214637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei.
    Beckstead RM; Morse JR; Norgren R
    J Comp Neurol; 1980 Mar; 190(2):259-82. PubMed ID: 6769981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The motor nuclei and primary projections of the IXth, Xth, XIth and XIIth cranial nerves in the monitor lizard, Varanus exanthematicus.
    Barbas-Henry HA; Lohman AH
    J Comp Neurol; 1984 Jul; 226(4):565-79. PubMed ID: 6747035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central origins of cranial nerve parasympathetic neurons in the rat.
    Contreras RJ; Gomez MM; Norgren R
    J Comp Neurol; 1980 Mar; 190(2):373-94. PubMed ID: 7381063
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization within the cranial IX-X complex in ranid frogs: a horseradish peroxidase transport study.
    Stuesse SL; Cruce WL; Powell KS
    J Comp Neurol; 1984 Jan; 222(3):358-65. PubMed ID: 6607937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptology of the direct projections from the nucleus of the solitary tract to pharyngeal motoneurons in the nucleus ambiguus of the rat.
    Hayakawa T; Zheng JQ; Seki M; Yajima Y
    J Comp Neurol; 1998 Apr; 393(3):391-401. PubMed ID: 9548557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphogenesis and morphology of the brain stem nuclei of Cetacea. II. The nuclei of the accessory, vagal and glossopharyngeal nerves in baleen whales.
    Jansen J; Osen KK
    J Hirnforsch; 1984; 25(1):53-87. PubMed ID: 6725941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gustatory innervation in the rabbit: central distribution of sensory and motor components of the chorda tympani, glossopharyngeal, and superior laryngeal nerves.
    Hanamori T; Smith DV
    J Comp Neurol; 1989 Apr; 282(1):1-14. PubMed ID: 2708588
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Projections to the cardioinhibitory region of the nucleus ambiguus of rat.
    Stuesse SL; Fish SE
    J Comp Neurol; 1984 Oct; 229(2):271-8. PubMed ID: 6501603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The motor nuclei of the glossopharyngeal-vagal and the accessorius nerves in the rat.
    Matesz C; Székely G
    Acta Biol Hung; 1983; 34(2-3):215-29. PubMed ID: 6198828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The localization, in the nucleus ambiguus of the rabbit, of the cells of origin of motor nerve fibers in the glossopharyngeal nerve and various branches of the vagus nerve by means of retrograde degeneration.
    Lawn AM
    J Comp Neurol; 1966 Jun; 127(2):293-306. PubMed ID: 5962688
    [No Abstract]   [Full Text] [Related]  

  • 16. Brainstem viscerotopic organization of afferents and efferents involved in the control of swallowing.
    Broussard DL; Altschuler SM
    Am J Med; 2000 Mar; 108 Suppl 4a():79S-86S. PubMed ID: 10718457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The central organization of the vagus nerve innervating the stomach of the rat.
    Shapiro RE; Miselis RR
    J Comp Neurol; 1985 Aug; 238(4):473-88. PubMed ID: 3840183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion.
    Kalia M; Mesulam MM
    J Comp Neurol; 1980 Sep; 193(2):435-65. PubMed ID: 7440777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dorsal medullary pathways subserving oromotor reflexes in the rat: implications for the central neural control of swallowing.
    Cunningham ET; Sawchenko PE
    J Comp Neurol; 2000 Feb; 417(4):448-66. PubMed ID: 10701866
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural characterization of pharyngeal and esophageal motoneurons in the nucleus ambiguus of the rat.
    Hayakawa T; Yajima Y; Zyo K
    J Comp Neurol; 1996 Jun; 370(2):135-46. PubMed ID: 8808726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.