These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36679680)

  • 1. Framework to Emulate Spacecraft Orbital Positioning Using GNSS Hardware in the Loop.
    Forero D; Esteban S; Rodríguez-Polo Ó
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Standalone GPS L1 C/A Receiver for Lunar Missions.
    Capuano V; Blunt P; Botteron C; Tian J; Leclère J; Wang Y; Basile F; Farine PA
    Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27005628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.
    Afifi A; El-Rabbany A
    Sensors (Basel); 2016 May; 16(6):. PubMed ID: 27240376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Proposal of a Troposphere Model in a GNSS Simulator for VANET Applications.
    Tropea M; Arieta A; De Rango F; Pupo F
    Sensors (Basel); 2021 Apr; 21(7):. PubMed ID: 33916684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NaviSoC: High-Accuracy Low-Power GNSS SoC with an Integrated Application Processor.
    Borejko T; Marcinek K; Siwiec K; Narczyk P; Borkowski A; Butryn I; Łuczyk A; Pietroń D; Plasota M; Reszewicz S; Wiechowski Ł; Pleskacz WA
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32079088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Fine-Tuned Positioning Algorithm for Space-Borne GNSS Timing Receivers.
    Chen X; Wei Q; Zhan Y; Ma T
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32325819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and Performance Analysis of Signal Acquisition and Doppler Tracking in LEO Augmented GNSS Receiver.
    Cheng L; Dai Y; Guo W; Zheng J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global Navigation Satellite System Real-Time Kinematic Positioning Framework for Precise Operation of a Swarm of Moving Vehicles.
    Kim E; Kim SK
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation and Analysis of GNSS Differential Code Biases (DCBs) Using a Multi-Spacing Software Receiver.
    Wang Y; Zhao L; Gao Y
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-Constellation Software-Defined Receiver for Doppler Positioning with LEO Satellites.
    Farhangian F; Landry RJ
    Sensors (Basel); 2020 Oct; 20(20):. PubMed ID: 33081355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sturdy positioning with high sensitivity GPS sensors under adverse conditions.
    Trajkovski KK; Sterle O; Stopar B
    Sensors (Basel); 2010; 10(9):8332-47. PubMed ID: 22163657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A real-time capable software-defined receiver using GPU for adaptive anti-jam GPS sensors.
    Seo J; Chen YH; De Lorenzo DS; Lo S; Enge P; Akos D; Lee J
    Sensors (Basel); 2011; 11(9):8966-91. PubMed ID: 22164116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benefits of Multi-Constellation/Multi-Frequency GNSS in a Tightly Coupled GNSS/IMU/Odometry Integration Algorithm.
    Reuper B; Becker M; Leinen S
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30213078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Implementation of Vector Tracking Loop for High-Dynamic GNSS ReceiverDesign and Implementation of Vector Tracking Loop for High-Dynamic GNSS Receiver.
    Mu R; Long T
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34451071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Availability of Space Service for Inter-Satellite Links in Navigation Constellations.
    Tang Y; Wang Y; Chen J
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Cost COTS GNSS Interference Monitoring, Detection, and Classification System.
    van der Merwe JR; Contreras Franco D; Hansen J; Brieger T; Feigl T; Ott F; Jdidi D; Rügamer A; Felber W
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implementation and Analysis of Tightly Coupled Global Navigation Satellite System Precise Point Positioning/Inertial Navigation System (GNSS PPP/INS) with Insufficient Satellites for Land Vehicle Navigation.
    Liu Y; Liu F; Gao Y; Zhao L
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Undifferenced Kinematic Precise Orbit Determination of Swarm and GRACE-FO Satellites from GNSS Observations.
    Luo P; Jin S; Shi Q
    Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Effective Sensor Architecture for Full-Attitude Determination in the HERMES Nano-Satellites.
    Colagrossi A; Lavagna M; Bertacin R
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of L1 and L5 Bands GNSS Signals Acquisition.
    Leclère J; Landry R; Botteron C
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30142964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.