These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36679687)

  • 1. Parameter Optimization and Development of Mini Infrared Lidar for Atmospheric Three-Dimensional Detection.
    Kuang Z; Liu D; Wu D; Wang Z; Li C; Deng Q
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of atmospheric aerosols and mixing layer by LIDAR.
    Angelini F; Barnaba F; Landi TC; Caporaso L; Gobbi GP
    Radiat Prot Dosimetry; 2009 Dec; 137(3-4):275-9. PubMed ID: 19843545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mie lidar observations of lower tropospheric aerosols and clouds.
    Veerabuthiran S; Razdan AK; Jindal MK; Dubey DK; Sharma RC
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Dec; 84(1):32-6. PubMed ID: 21975046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence from atmospheric aerosols observed with a multi-channel lidar spectrometer.
    Sugimoto N; Huang Z; Nishizawa T; Matsui I; Tatarov B
    Opt Express; 2012 Sep; 20(19):20800-7. PubMed ID: 23037203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mini-Scheimpflug lidar system for all-day atmospheric remote sensing in the boundary layer.
    Mei L; Li Y; Kong Z; Ma T; Zhang Z; Fei R; Cheng Y; Gong Z; Liu K
    Appl Opt; 2020 Aug; 59(22):6729-6736. PubMed ID: 32749378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New methods of data calibration for high power-aperture lidar.
    Guan S; Yang G; Chang Q; Cheng X; Yang Y; Gong S; Wang J
    Opt Express; 2013 Mar; 21(6):7768-85. PubMed ID: 23546158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurements of aerosol phase function and vertical backscattering coefficient using a charge-coupled device side-scatter lidar.
    Tao Z; Liu D; Wang Z; Ma X; Zhang Q; Xie C; Bo G; Hu S; Wang Y
    Opt Express; 2014 Jan; 22(1):1127-34. PubMed ID: 24515072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new eye-safe lidar design for studying atmospheric aerosol distributions.
    Cao N; Zhou X; Li S; Chen Z
    Rev Sci Instrum; 2009 Mar; 80(3):035109. PubMed ID: 19334954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization Raman lidar for atmospheric correction during remote sensing satellite calibration: instrument and test measurements.
    Mao S; Wang A; Yi Y; Yin Z; Zhao Y; Hu X; Wang X
    Opt Express; 2022 Mar; 30(7):11986-12007. PubMed ID: 35473129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-wavelength polarization Scheimpflug lidar system developed for remote sensing of atmospheric aerosols.
    Kong Z; Ma T; Chen K; Gong Z; Mei L
    Appl Opt; 2019 Nov; 58(31):8612-8621. PubMed ID: 31873345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stratospheric temperature monitoring using a vibrational Raman lidar. Part 1: aerosols and ozone interferences.
    Faduilhe D; Keckhut P; Bencherif H; Robert L; Baldy S
    J Environ Monit; 2005 Apr; 7(4):357-64. PubMed ID: 15798803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared lidar overlap function: an experimental determination.
    Guerrero-Rascado JL; Costa MJ; Bortoli D; Silva AM; Lyamani H; Alados-Arboledas L
    Opt Express; 2010 Sep; 18(19):20350-9. PubMed ID: 20940927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lidar mapping of atmospheric atomic mercury in the Wanshan area, China.
    Lian M; Shang L; Duan Z; Li Y; Zhao G; Zhu S; Qiu G; Meng B; Sommar J; Feng X; Svanberg S
    Environ Pollut; 2018 Sep; 240():353-358. PubMed ID: 29751331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Repetition Rate Mid-Infrared Differential Absorption Lidar for Atmospheric Pollution Detection.
    Gong Y; Bu L; Yang B; Mustafa F
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.
    Mei L; Brydegaard M
    Opt Express; 2015 Nov; 23(24):A1613-28. PubMed ID: 26698808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initial experimental multi-wavelength EEM (Excitation Emission Matrix) fluorescence lidar detection and classification of atmospheric pollen with potential applications toward real-time bioaerosols monitoring.
    Saito Y; Kawai K
    Opt Express; 2022 May; 30(11):19922-19929. PubMed ID: 36221755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of atmospheric aerosols and clouds by use of dual-polarization lidar measurements.
    Qi S; Huang Z; Ma X; Huang J; Zhou T; Zhang S; Dong Q; Bi J; Shi J
    Opt Express; 2021 Jul; 29(15):23461-23476. PubMed ID: 34614611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LED Mini Lidar for Atmospheric Application.
    Shiina T
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30700059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies.
    Mei L; Kong Z; Guan P
    Opt Express; 2018 Mar; 26(6):A260-A274. PubMed ID: 29609357
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous wave synthetic low-coherence wind sensing Lidar: motionless measurement system with subsequent numerical range scanning.
    Brinkmeyer E; Waterholter T
    Opt Express; 2013 Jan; 21(2):1872-97. PubMed ID: 23389172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.