These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36679765)

  • 1. Research on Orbital Angular Momentum Recognition Technology Based on a Convolutional Neural Network.
    Li X; Sun L; Huang J; Zeng F
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in orbital-angular-momentum modes of a propagated vortex Gaussian beam through weak-to-strong atmospheric turbulence.
    Chen C; Yang H; Tong S; Lou Y
    Opt Express; 2016 Apr; 24(7):6959-75. PubMed ID: 27136990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental recognition of vortex beams in oceanic turbulence combining the Gerchberg-Saxton algorithm and convolutional neural network.
    Fan WQ; Gao FL; Xue FC; Guo JJ; Xiao Y; Gu YJ
    Appl Opt; 2024 Feb; 63(4):982-989. PubMed ID: 38437395
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Propagation of an optical vortex carried by a partially coherent Laguerre-Gaussian beam in turbulent ocean.
    Cheng M; Guo L; Li J; Huang Q; Cheng Q; Zhang D
    Appl Opt; 2016 Jun; 55(17):4642-8. PubMed ID: 27409021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of anisotropic turbulence on the orbital angular momentum modes of Hermite-Gaussian vortex beam in the ocean.
    Li Y; Yu L; Zhang Y
    Opt Express; 2017 May; 25(11):12203-12215. PubMed ID: 28786579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication.
    Liu J; Wang P; Zhang X; He Y; Zhou X; Ye H; Li Y; Xu S; Chen S; Fan D
    Opt Express; 2019 Jun; 27(12):16671-16688. PubMed ID: 31252890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffractive deep neural network based adaptive optics scheme for vortex beam in oceanic turbulence.
    Zhan H; Peng Y; Chen B; Wang L; Wang W; Zhao S
    Opt Express; 2022 Jun; 30(13):23305-23317. PubMed ID: 36225014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weak turbulence effects on different beams carrying orbital angular momentum.
    Ferlic NA; van Iersel M; Davis CC
    J Opt Soc Am A Opt Image Sci Vis; 2021 Oct; 38(10):1423-1437. PubMed ID: 34612971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orbital angular momentum-mediated machine learning for high-accuracy mode-feature encoding.
    Fang X; Hu X; Li B; Su H; Cheng K; Luan H; Gu M
    Light Sci Appl; 2024 Feb; 13(1):49. PubMed ID: 38355566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orbital angular momentum spectra of twisted Laguerre-Gaussian Schell-model beams propagating in weak-to-strong Kolmogorov atmospheric turbulence.
    Wang H; Yang Z; Liu L; Chen Y; Wang F; Cai Y
    Opt Express; 2023 Jan; 31(2):916-928. PubMed ID: 36785140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting the orbital angular momentum of atmospheric turbulence for OAM-based free-space optical communication.
    Hu W; Yang J; Zhu L; Wang A
    Opt Express; 2023 Dec; 31(25):41060-41071. PubMed ID: 38087514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mode detection of misaligned orbital angular momentum beams based on convolutional neural network.
    Zhao Q; Hao S; Wang Y; Wang L; Wan X; Xu C
    Appl Opt; 2018 Dec; 57(35):10152-10158. PubMed ID: 30645219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance analysis of adaptive optics with a phase retrieval algorithm in orbital-angular-momentum-based oceanic turbulence links.
    Chang H; Yin X; Cui X; Chen XZ; Su YZ; Ma JX; Wang YJ; Zhang L; Xin X
    Appl Opt; 2019 Aug; 58(22):6085-6090. PubMed ID: 31503929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probability density of orbital angular momentum mode of autofocusing Airy beam carrying power-exponent-phase vortex through weak anisotropic atmosphere turbulence.
    Yan X; Guo L; Cheng M; Li J; Huang Q; Sun R
    Opt Express; 2017 Jun; 25(13):15286-15298. PubMed ID: 28788956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning approach to OAM beam demultiplexing via convolutional neural networks.
    Doster T; Watnik AT
    Appl Opt; 2017 Apr; 56(12):3386-3396. PubMed ID: 28430266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Average capacity of an underwater wireless communication link with the quasi-Airy hypergeometric-Gaussian vortex beam based on a modified channel model.
    Chen H; Zhang P; He S; Dai H; Fan Y; Wang Y; Tong S
    Opt Express; 2023 Jul; 31(15):24067-24084. PubMed ID: 37475243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly accurate OAM mode detection network for ring Airy Gaussian vortex beams disturbed by atmospheric turbulence based on interferometry.
    Qin H; Fu Q; Tan W; Zou X; Huang W; Huang Z; Wang J; Huang X; Bai Y; Fu X
    J Opt Soc Am A Opt Image Sci Vis; 2023 Jul; 40(7):1319-1326. PubMed ID: 37706731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Security enhancement for adaptive optics aided longitudinal orbital angular momentum multiplexed underwater wireless communications.
    Zhu L; Xin X; Chang H; Wang X; Tian Q; Zhang Q; Gao R; Liu B
    Opt Express; 2022 Mar; 30(6):9745-9772. PubMed ID: 35299393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turbulence heterodyne coherent mitigation of orbital angular momentum multiplexing in a free space optical link by auxiliary light.
    Yang C; Xu C; Ni W; Gan Y; Hou J; Chen S
    Opt Express; 2017 Oct; 25(21):25612-25624. PubMed ID: 29041226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing the radial content of orbital-angular-momentum photonic states impaired by weak-to-strong atmospheric turbulence.
    Chen C; Yang H
    Opt Express; 2016 Aug; 24(17):19713-27. PubMed ID: 27557248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.