BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36679796)

  • 1. Conditional Generative Adversarial Networks for Data Augmentation of a Neonatal Image Dataset.
    Lyra S; Mustafa A; Rixen J; Borik S; Lueken M; Leonhardt S
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generating depth images of preterm infants in given poses using GANs.
    Cannata GP; Migliorelli L; Mancini A; Frontoni E; Pietrini R; Moccia S
    Comput Methods Programs Biomed; 2022 Oct; 225():107057. PubMed ID: 35952537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast body part segmentation and tracking of neonatal video data using deep learning.
    Antink CH; Ferreira JCM; Paul M; Lyra S; Heimann K; Karthik S; Joseph J; Jayaraman K; Orlikowsky T; Sivaprakasam M; Leonhardt S
    Med Biol Eng Comput; 2020 Dec; 58(12):3049-3061. PubMed ID: 33094430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pix2xray: converting RGB images into X-rays using generative adversarial networks.
    Haiderbhai M; Ledesma S; Lee SC; Seibold M; Fürnstahl P; Navab N; Fallavollita P
    Int J Comput Assist Radiol Surg; 2020 Jun; 15(6):973-980. PubMed ID: 32342258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-modal body part segmentation of infants using deep learning.
    Voss F; Brechmann N; Lyra S; Rixen J; Leonhardt S; Hoog Antink C
    Biomed Eng Online; 2023 Mar; 22(1):28. PubMed ID: 36949491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A pavement crack synthesis method based on conditional generative adversarial networks.
    Yao H; Wu Y; Liu S; Liu Y; Xie H
    Math Biosci Eng; 2024 Jan; 21(1):903-923. PubMed ID: 38303448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small facial image dataset augmentation using conditional GANs based on incomplete edge feature input.
    Hung SK; Gan JQ
    PeerJ Comput Sci; 2021; 7():e760. PubMed ID: 34901424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D conditional generative adversarial networks for high-quality PET image estimation at low dose.
    Wang Y; Yu B; Wang L; Zu C; Lalush DS; Lin W; Wu X; Zhou J; Shen D; Zhou L
    Neuroimage; 2018 Jul; 174():550-562. PubMed ID: 29571715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-content image generation for drug discovery using generative adversarial networks.
    Hussain S; Anees A; Das A; Nguyen BP; Marzuki M; Lin S; Wright G; Singhal A
    Neural Netw; 2020 Dec; 132():353-363. PubMed ID: 32977280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generating synthesized computed tomography from CBCT using a conditional generative adversarial network for head and neck cancer patients.
    Zhang Y; Ding SG; Gong XC; Yuan XX; Lin JF; Chen Q; Li JG
    Technol Cancer Res Treat; 2022; 21():15330338221085358. PubMed ID: 35262422
    [No Abstract]   [Full Text] [Related]  

  • 12. Robust Data Augmentation Generative Adversarial Network for Object Detection.
    Lee H; Kang S; Chung K
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616754
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Camera fusion for real-time temperature monitoring of neonates using deep learning.
    Lyra S; Rixen J; Heimann K; Karthik S; Joseph J; Jayaraman K; Orlikowsky T; Sivaprakasam M; Leonhardt S; Hoog Antink C
    Med Biol Eng Comput; 2022 Jun; 60(6):1787-1800. PubMed ID: 35505175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plant Root Phenotyping Using Deep Conditional GANs and Binary Semantic Segmentation.
    Thesma V; Mohammadpour Velni J
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting the Generative Adversarial Network Approach to Create a Synthetic Topography Corneal Image.
    Jameel SK; Aydin S; Ghaeb NH; Majidpour J; Rashid TA; Salih SQ; JosephNg PS
    Biomolecules; 2022 Dec; 12(12):. PubMed ID: 36551316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Ensemble of Transfer Learning Models for the Prediction of Skin Cancers with Conditional Generative Adversarial Networks.
    Al-Rasheed A; Ksibi A; Ayadi M; Alzahrani AIA; Zakariah M; Ali Hakami N
    Diagnostics (Basel); 2022 Dec; 12(12):. PubMed ID: 36553152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Histopathological Image Classification Performance through Synthetic Data Generation with Generative Adversarial Networks.
    Ruiz-Casado JL; Molina-Cabello MA; Luque-Baena RM
    Sensors (Basel); 2024 Jun; 24(12):. PubMed ID: 38931561
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploration of Semantic Label Decomposition and Dataset Size in Semantic Indoor Scenes Synthesis via Optimized Residual Generative Adversarial Networks.
    Ibrahem H; Salem A; Kang HS
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain Tumor Classification Using a Combination of Variational Autoencoders and Generative Adversarial Networks.
    Ahmad B; Sun J; You Q; Palade V; Mao Z
    Biomedicines; 2022 Jan; 10(2):. PubMed ID: 35203433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pix2pix Conditional Generative Adversarial Networks for Scheimpflug Camera Color-Coded Corneal Tomography Image Generation.
    Abdelmotaal H; Abdou AA; Omar AF; El-Sebaity DM; Abdelazeem K
    Transl Vis Sci Technol; 2021 Jun; 10(7):21. PubMed ID: 34132759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.