These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36679990)
21. A mathematical study on a fractional COVID-19 transmission model within the framework of nonsingular and nonlocal kernel. Okposo NI; Adewole MO; Okposo EN; Ojarikre HI; Abdullah FA Chaos Solitons Fractals; 2021 Nov; 152():111427. PubMed ID: 36569784 [TBL] [Abstract][Full Text] [Related]
22. A fractional order model of the COVID-19 outbreak in Bangladesh. Akter S; Jin Z Math Biosci Eng; 2023 Jan; 20(2):2544-2565. PubMed ID: 36899546 [TBL] [Abstract][Full Text] [Related]
23. Fractional Model and Numerical Algorithms for Predicting COVID-19 with Isolation and Quarantine Strategies. Alla Hamou A; Azroul E; Lamrani Alaoui A Int J Appl Comput Math; 2021; 7(4):142. PubMed ID: 34226872 [TBL] [Abstract][Full Text] [Related]
24. A fractional-order model for COVID-19 and tuberculosis co-infection using Atangana-Baleanu derivative. Omame A; Abbas M; Onyenegecha CP Chaos Solitons Fractals; 2021 Dec; 153():111486. PubMed ID: 34658543 [TBL] [Abstract][Full Text] [Related]
25. The analysis of a new fractional model to the Zika virus infection with mutant. Zafar ZUA; Khan MA; Inc M; Akgül A; Asiri M; Riaz MB Heliyon; 2024 Jan; 10(1):e23390. PubMed ID: 38187345 [TBL] [Abstract][Full Text] [Related]
26. Fractional dynamical model to assess the efficacy of facemask to the community transmission of COVID-19. Baba IA; Sani MA; Nasidi BA Comput Methods Biomech Biomed Engin; 2022 Nov; 25(14):1588-1598. PubMed ID: 35014914 [TBL] [Abstract][Full Text] [Related]
27. Fractional Order Model for the Role of Mild Cases in the Transmission of COVID-19. Baba IA; Nasidi BA Chaos Solitons Fractals; 2021 Jan; 142():110374. PubMed ID: 33100604 [TBL] [Abstract][Full Text] [Related]
28. Assessing the impact of SARS-CoV-2 infection on the dynamics of dengue and HIV via fractional derivatives. Omame A; Abbas M; Abdel-Aty AH Chaos Solitons Fractals; 2022 Sep; 162():112427. PubMed ID: 35844899 [TBL] [Abstract][Full Text] [Related]
29. Stability Analysis of an Extended SEIR COVID-19 Fractional Model with Vaccination Efficiency. Wali M; Arshad S; Huang J Comput Math Methods Med; 2022; 2022():3754051. PubMed ID: 36176740 [TBL] [Abstract][Full Text] [Related]
30. Modeling the impact of the vaccine on the COVID-19 epidemic transmission via fractional derivative. Arshad S; Khalid S; Javed S; Amin N; Nawaz F Eur Phys J Plus; 2022; 137(7):802. PubMed ID: 35845824 [TBL] [Abstract][Full Text] [Related]
31. Fractional dynamics and stability analysis of COVID-19 pandemic model under the harmonic mean type incidence rate. Khan A; Zarin R; Khan S; Saeed A; Gul T; Humphries UW Comput Methods Biomech Biomed Engin; 2022 May; 25(6):619-640. PubMed ID: 34720000 [TBL] [Abstract][Full Text] [Related]
32. Mathematical model for the novel coronavirus (2019-nCOV) with clinical data using fractional operator. El-Sayed AMA; Arafa A; Hagag A Numer Methods Partial Differ Equ; 2022 Sep; ():. PubMed ID: 36245569 [TBL] [Abstract][Full Text] [Related]
33. Fractional-calculus analysis of the transmission dynamics of the dengue infection. Srivastava HM; Jan R; Jan A; Deebani W; Shutaywi M Chaos; 2021 May; 31(5):053130. PubMed ID: 34240948 [TBL] [Abstract][Full Text] [Related]
34. A nonlinear fractional epidemic model for the Marburg virus transmission with public health education. Addai E; Adeniji A; Ngungu M; Tawiah GK; Marinda E; Asamoah JKK; Khan MA Sci Rep; 2023 Nov; 13(1):19292. PubMed ID: 37935815 [TBL] [Abstract][Full Text] [Related]
35. Modeling the Spread of COVID-19 with the Control of Mixed Vaccine Types during the Pandemic in Thailand. Intarapanya T; Suratanee A; Pattaradilokrat S; Plaimas K Trop Med Infect Dis; 2023 Mar; 8(3):. PubMed ID: 36977177 [TBL] [Abstract][Full Text] [Related]
36. A fractional-order mathematical model for malaria and COVID-19 co-infection dynamics. Abioye AI; Peter OJ; Ogunseye HA; Oguntolu FA; Ayoola TA; Oladapo AO Healthc Anal (N Y); 2023 Dec; 4():100210. PubMed ID: 37361719 [TBL] [Abstract][Full Text] [Related]
37. Hepatitis C virus fractional-order model: mathematical analysis. Sadki M; Danane J; Allali K Model Earth Syst Environ; 2023; 9(2):1695-1707. PubMed ID: 36345473 [TBL] [Abstract][Full Text] [Related]
39. A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Tuan NH; Mohammadi H; Rezapour S Chaos Solitons Fractals; 2020 Nov; 140():110107. PubMed ID: 33519107 [TBL] [Abstract][Full Text] [Related]
40. A fractional-order model with different strains of COVID-19. Baba IA; Rihan FA Physica A; 2022 Oct; 603():127813. PubMed ID: 35765370 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]