These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 36680376)

  • 1. Bistable Joints Enable the Morphing of Hydrogel Sheets with Multistable Configurations.
    Li CY; Jiao D; Hao XP; Hong W; Zheng Q; Wu ZL
    Adv Mater; 2023 Apr; 35(15):e2211802. PubMed ID: 36680376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Programmable Morphing Hydrogels for Soft Actuators and Robots: From Structure Designs to Active Functions.
    Jiao D; Zhu QL; Li CY; Zheng Q; Wu ZL
    Acc Chem Res; 2022 Jun; 55(11):1533-1545. PubMed ID: 35413187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kirigami-Design-Enabled Hydrogel Multimorphs with Application as a Multistate Switch.
    Hao XP; Xu Z; Li CY; Hong W; Zheng Q; Wu ZL
    Adv Mater; 2020 Jun; 32(22):e2000781. PubMed ID: 32319155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Programming Soft Shape-Morphing Systems by Harnessing Strain Mismatch and Snap-Through Bistability: A Review.
    Wu Y; Guo G; Wei Z; Qian J
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative deformations of periodically patterned hydrogels.
    Wang ZJ; Zhu CN; Hong W; Wu ZL; Zheng Q
    Sci Adv; 2017 Sep; 3(9):e1700348. PubMed ID: 28929134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterned Aluminum/Polydimethylsiloxane-Laminated Film for a Solvent-Driven Soft Actuator with Programmable and Multistable Shape Morphing.
    Guo Q; Yan J; Wu C; Jiang J; Zhou J; Lin Z; Hua N; Zhang P; Zheng C; Yang K; Weng M
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49171-49180. PubMed ID: 36274230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bistable and Multistable Actuators for Soft Robots: Structures, Materials, and Functionalities.
    Chi Y; Li Y; Zhao Y; Hong Y; Tang Y; Yin J
    Adv Mater; 2022 May; 34(19):e2110384. PubMed ID: 35172026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable Deformations of Biomimetic Composite Hydrogels Embedded with Printed Fibers.
    Zheng SY; Li CY; Du M; Yin J; Qian J; Wu ZL; Zheng Q
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57497-57504. PubMed ID: 33319983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering viscoelastic mismatch for temporal morphing of tough supramolecular hydrogels.
    Hao XP; Zhang CW; Hong W; Meng M; Hou LX; Du M; Zheng Q; Wu ZL
    Mater Horiz; 2023 Feb; 10(2):432-442. PubMed ID: 36606414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multistable shape programming of variable-stiffness electromagnetic devices.
    Aksoy B; Shea H
    Sci Adv; 2022 May; 8(21):eabk0543. PubMed ID: 35622912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Programmable Auxeticity in Hydrogel Metamaterials via Shape-Morphing Unit Cells.
    Skarsetz O; Slesarenko V; Walther A
    Adv Sci (Weinh); 2022 Aug; 9(23):e2201867. PubMed ID: 35748172
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smart Bilayer Polyacrylamide/DNA Hybrid Hydrogel Film Actuators Exhibiting Programmable Responsive and Reversible Macroscopic Shape Deformations.
    Bi Y; Du X; He P; Wang C; Liu C; Guo W
    Small; 2020 Oct; 16(42):e1906998. PubMed ID: 32985098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shape-Morphing Materials from Stimuli-Responsive Hydrogel Hybrids.
    Jeon SJ; Hauser AW; Hayward RC
    Acc Chem Res; 2017 Feb; 50(2):161-169. PubMed ID: 28181798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterned Electrode Assisted One-Step Fabrication of Biomimetic Morphing Hydrogels with Sophisticated Anisotropic Structures.
    Zhu QL; Dai CF; Wagner D; Khoruzhenko O; Hong W; Breu J; Zheng Q; Wu ZL
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102353. PubMed ID: 34705341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kirigami-Inspired Programmable Soft Magnetoresponsive Actuators with Versatile Morphing Modes.
    Zhu H; Wang Y; Ge Y; Zhao Y; Jiang C
    Adv Sci (Weinh); 2022 Nov; 9(32):e2203711. PubMed ID: 36180420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Near-Infrared Light-Driven Shape-Programmable Hydrogel Actuators Loaded with Metal-Organic Frameworks.
    Zhang X; Xue P; Yang X; Valenzuela C; Chen Y; Lv P; Wang Z; Wang L; Xu X
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11834-11841. PubMed ID: 35192332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nature-Inspired Sequential Shape Transformation of Energy-Patterned Hydrogel Sheets.
    Fan W; Yin J; Yi C; Xia Y; Nie Z; Sui K
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4878-4886. PubMed ID: 31904933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable mechanical devices through magnetically tunable bistable elements.
    Pal A; Sitti M
    Proc Natl Acad Sci U S A; 2023 Apr; 120(15):e2212489120. PubMed ID: 37011212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous and rapid electro-actuated snapping of constrained polyelectrolyte hydrogels.
    Li CY; Zheng SY; Hao XP; Hong W; Zheng Q; Wu ZL
    Sci Adv; 2022 Apr; 8(15):eabm9608. PubMed ID: 35417235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photolithographically Patterned Hydrogels with Programmed Deformations.
    Li CY; Hao XP; Wu ZL; Zheng Q
    Chem Asian J; 2019 Jan; 14(1):94-104. PubMed ID: 30239161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.