These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36680499)
1. CFD-based pesticide selection for a nozzle used in a six-rotor UAV in hover mode for tea spraying. Dong SJ; Gui QH; Zhu L; Zou XR; Zhou WX; Hou RY; Moray PJ; Yin CL Pest Manag Sci; 2023 May; 79(5):1963-1976. PubMed ID: 36680499 [TBL] [Abstract][Full Text] [Related]
2. Spray performance and control efficacy against pests in paddy rice by UAV-based pesticide application: effects of atomization, UAV configuration and flight velocity. Wongsuk S; Qi P; Wang C; Zeng A; Sun F; Yu F; Zhao X; Xiongkui H Pest Manag Sci; 2024 Apr; 80(4):2072-2084. PubMed ID: 38129096 [TBL] [Abstract][Full Text] [Related]
3. Spray performance evaluation of a six-rotor unmanned aerial vehicle sprayer for pesticide application using an orchard operation mode in apple orchards. Wang C; Liu Y; Zhang Z; Han L; Li Y; Zhang H; Wongsuk S; Li Y; Wu X; He X Pest Manag Sci; 2022 Jun; 78(6):2449-2466. PubMed ID: 35306733 [TBL] [Abstract][Full Text] [Related]
4. Numerical simulation and verification of rotor downwash flow field of plant protection UAV at different rotor speeds. Chang K; Chen S; Wang M; Xue X; Lan Y Front Plant Sci; 2022; 13():1087636. PubMed ID: 36777541 [TBL] [Abstract][Full Text] [Related]
5. Droplet distribution in cotton canopy using single-rotor and four-rotor unmanned aerial vehicles. Meng Y; Ma Y; Wang Z; Hu H PeerJ; 2022; 10():e13572. PubMed ID: 35722263 [TBL] [Abstract][Full Text] [Related]
6. Downwash characteristics and analysis from a six-rotor unmanned aerial vehicle configured for plant protection. Yang S; Xu P; Jiang S; Zheng Y Pest Manag Sci; 2022 Apr; 78(4):1707-1720. PubMed ID: 34994501 [TBL] [Abstract][Full Text] [Related]
7. UAV spraying on citrus crop: impact of tank-mix adjuvant on the contact angle and droplet distribution. Meng Y; Zhong W; Liu C; Su J; Su J; Lan Y; Wang Z; Wang M PeerJ; 2022; 10():e13064. PubMed ID: 35295557 [TBL] [Abstract][Full Text] [Related]
8. Back pressure generated by downwash and crosswind on spatial atomization characteristics during UAV spraying: CFD analysis and verification. Feng H; Xu P; Yang S; Zheng Y; Li W; Liu W; Zhao H; Jiang S Pest Manag Sci; 2024 Mar; 80(3):1348-1360. PubMed ID: 37915287 [TBL] [Abstract][Full Text] [Related]
9. Swath pattern analysis from a multi-rotor unmanned aerial vehicle configured for pesticide application. Richardson B; Rolando CA; Somchit C; Dunker C; Strand TM; Kimberley MO Pest Manag Sci; 2020 Apr; 76(4):1282-1290. PubMed ID: 31595645 [TBL] [Abstract][Full Text] [Related]
10. Droplet Deposition Distribution Prediction Method for a Six-Rotor Plant Protection UAV Based on Inverse Distance Weighting. Wang B; Zhang Y; Wang C; Teng G Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236524 [TBL] [Abstract][Full Text] [Related]
11. Assessment of spray deposition, drift and mass balance from unmanned aerial vehicle sprayer using an artificial vineyard. Wang C; Herbst A; Zeng A; Wongsuk S; Qiao B; Qi P; Bonds J; Overbeck V; Yang Y; Gao W; He X Sci Total Environ; 2021 Jul; 777():146181. PubMed ID: 33689892 [TBL] [Abstract][Full Text] [Related]
12. Comparison of UAV and fixed-wing aerial application for alfalfa insect pest control: evaluating efficacy, residues, and spray quality. Li X; Giles DK; Andaloro JT; Long R; Lang EB; Watson LJ; Qandah I Pest Manag Sci; 2021 Nov; 77(11):4980-4992. PubMed ID: 34216079 [TBL] [Abstract][Full Text] [Related]
13. Challenges and opportunities of unmanned aerial vehicles as a new tool for crop pest control. Zhang R; Hewitt AJ; Chen L; Li L; Tang Q Pest Manag Sci; 2023 Nov; 79(11):4123-4131. PubMed ID: 37494136 [TBL] [Abstract][Full Text] [Related]
14. Effects of tank-mix adjuvants on physicochemical properties and dosage delivery at low dilution ratios for unmanned aerial vehicle application in paddy fields. Zhao R; Sun Z; Bird N; Gu YC; Xu Y; Zhang ZH; Wu XM Pest Manag Sci; 2022 Apr; 78(4):1582-1593. PubMed ID: 34984795 [TBL] [Abstract][Full Text] [Related]
15. Determination of the effective swath of a plant protection UAV adapted to mist nozzles in mountain Nangguo pear orchards. Liu Y; Yao W; Guo S; Yan H; Yu Z; Meng S; Chen D; Chen C Front Plant Sci; 2024; 15():1336580. PubMed ID: 38974984 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of unmanned aerial vehicle for effective spraying application in coconut plantations. Pandiselvam R; Daliyamol ; Imran S S; Hegde V; Sujithra M; Prathibha PS; Prathibha VH; Hebbar KB Heliyon; 2024 Oct; 10(19):e38569. PubMed ID: 39397987 [TBL] [Abstract][Full Text] [Related]
17. Design of Variable Spray System for Plant Protection UAV Based on CFD Simulation and Regression Analysis. Ni M; Wang H; Liu X; Liao Y; Fu L; Wu Q; Mu J; Chen X; Li J Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477600 [TBL] [Abstract][Full Text] [Related]
18. Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Wang G; Lan Y; Qi H; Chen P; Hewitt A; Han Y Pest Manag Sci; 2019 Jun; 75(6):1546-1555. PubMed ID: 30620130 [TBL] [Abstract][Full Text] [Related]
19. Using tank-mix adjuvant improves the physicochemical properties and dosage delivery to reduce the use of pesticides in unmanned aerial vehicles for plant protection in wheat. Zhao R; Yu M; Sun Z; Li LJ; Shang HY; Xi WJ; Li B; Li YY; Xu Y; Wu XM Pest Manag Sci; 2022 Jun; 78(6):2512-2522. PubMed ID: 35318795 [TBL] [Abstract][Full Text] [Related]
20. Post-movement stabilization time for the downwash region of a 6-rotor UAV for remote gas monitoring. Brinkman JL; Davis B; Johnson CE Heliyon; 2020 Sep; 6(9):e04994. PubMed ID: 33005799 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]