These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36680499)
21. Control Efficacy of UAV-Based Ultra-Low-Volume Application of Pesticide in Chestnut Orchards. Arakawa T; Kamio S Plants (Basel); 2023 Jul; 12(14):. PubMed ID: 37514212 [TBL] [Abstract][Full Text] [Related]
22. Field evaluation of spray drift and nontargeted soybean injury from unmanned aerial spraying system herbicide application under acceptable operation conditions. Huang Z; Wang C; Li Y; Zhang H; Zeng A; He X Pest Manag Sci; 2023 Mar; 79(3):1140-1153. PubMed ID: 36349383 [TBL] [Abstract][Full Text] [Related]
23. Boom sprayer optimizations for bed-grown carrots at different growth stages based on spray distribution and droplet characteristics. Zwertvaegher I; Lamare A; Douzals JP; Balsari P; Marucco P; Grella M; Caffini A; Mylonas N; Dekeyser D; Foqué D; Nuyttens D Pest Manag Sci; 2022 Apr; 78(4):1729-1739. PubMed ID: 34995010 [TBL] [Abstract][Full Text] [Related]
24. Field evaluation of a six-rotor unmanned agricultural aerial sprayer: effects of application parameters on spray deposition and control efficacy against rice planthopper. Huang Z; Wang C; Wongsuk S; Qi P; Liu L; Qiao B; Zhong L; He X Pest Manag Sci; 2023 Nov; 79(11):4664-4678. PubMed ID: 37448099 [TBL] [Abstract][Full Text] [Related]
25. Design of UAV Downwash Airflow Field Detection System Based on Strain Effect Principle. Wu Y; Qi L; Zhang H; Musiu EM; Yang Z; Wang P Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31185638 [TBL] [Abstract][Full Text] [Related]
26. WSN-Assisted UAV Trajectory Adjustment for Pesticide Drift Control. Hu J; Wang T; Yang J; Lan Y; Lv S; Zhang Y Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32987849 [TBL] [Abstract][Full Text] [Related]
27. Effect of flight velocity on droplet deposition and drift of combined pesticides sprayed using an unmanned aerial vehicle sprayer in a peach orchard. Li L; Hu Z; Liu Q; Yi T; Han P; Zhang R; Pan L Front Plant Sci; 2022; 13():981494. PubMed ID: 36247584 [TBL] [Abstract][Full Text] [Related]
28. Does dual reduction in chemical fertilizer and pesticides improve nutrient loss and tea yield and quality? A pilot study in a green tea garden in Shaoxing, Zhejiang Province, China. Xie S; Feng H; Yang F; Zhao Z; Hu X; Wei C; Liang T; Li H; Geng Y Environ Sci Pollut Res Int; 2019 Jan; 26(3):2464-2476. PubMed ID: 30471060 [TBL] [Abstract][Full Text] [Related]
29. Monitoring and risk analysis of residual pesticides drifted by unmanned aerial spraying. Kim CJ; Yuan X; Kim M; Kyung KS; Noh HH Sci Rep; 2023 Jul; 13(1):10834. PubMed ID: 37407576 [TBL] [Abstract][Full Text] [Related]
30. UAV-spray application in vineyards: Flight modes and spray system adjustment effects on canopy deposit, coverage, and off-target losses. Biglia A; Grella M; Bloise N; Comba L; Mozzanini E; Sopegno A; Pittarello M; Dicembrini E; Alcatrão LE; Guglieri G; Balsari P; Aimonino DR; Gay P Sci Total Environ; 2022 Nov; 845():157292. PubMed ID: 35820523 [TBL] [Abstract][Full Text] [Related]
31. Risk assessment of environmental and bystander exposure from agricultural unmanned aerial vehicle sprayers in golden coconut plantations: Effects of droplet size and spray volume. Lan X; Wang J; Chen P; Liang Q; Zhang L; Ma C Ecotoxicol Environ Saf; 2024 Sep; 282():116675. PubMed ID: 38971099 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of aerial spraying application of multi-rotor unmanned aerial vehicle for Wang J; Ma C; Chen P; Yao W; Yan Y; Zeng T; Chen S; Lan Y Front Plant Sci; 2023; 14():1093912. PubMed ID: 36925752 [TBL] [Abstract][Full Text] [Related]
33. Assessing the potential spray drift of a six-rotor unmanned aerial vehicle sprayer using a test bench and airborne drift collectors under low wind velocities: impact of atomization characteristics and application parameters. Wongsuk S; Zhu Z; Zheng A; Qi P; Li Y; Huang Z; Han H; Wang C; He X Pest Manag Sci; 2024 Dec; 80(12):6053-6067. PubMed ID: 39030971 [TBL] [Abstract][Full Text] [Related]
34. Assessing the efficiency of UAV for pesticide application in disease management of peanut crop. Shan C; Wang G; Wang H; Wu L; Song C; Hussain M; Wang H; Lan Y Pest Manag Sci; 2024 Sep; 80(9):4505-4515. PubMed ID: 38703046 [TBL] [Abstract][Full Text] [Related]
35. Field evaluation of spray drift and environmental impact using an agricultural unmanned aerial vehicle (UAV) sprayer. Wang G; Han Y; Li X; Andaloro J; Chen P; Hoffmann WC; Han X; Chen S; Lan Y Sci Total Environ; 2020 Oct; 737():139793. PubMed ID: 32526578 [TBL] [Abstract][Full Text] [Related]
36. Optimization of Operational Parameters of Plant Protection UAV. Xing W; Cui Y; Wang X; Shen J Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204829 [TBL] [Abstract][Full Text] [Related]
37. Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Li X; Giles DK; Niederholzer FJ; Andaloro JT; Lang EB; Watson LJ Pest Manag Sci; 2021 Jan; 77(1):527-537. PubMed ID: 32816397 [TBL] [Abstract][Full Text] [Related]
38. Research on a UAV spray system combined with grid atomized droplets. Xue X; Tian Y; Yang Z; Li Z; Lyu S; Song S; Sun D Front Plant Sci; 2023; 14():1286332. PubMed ID: 38235193 [TBL] [Abstract][Full Text] [Related]
39. UAV-Borne Dual-Band Sensor Method for Monitoring Physiological Crop Status. Yao L; Wang Q; Yang J; Zhang Y; Zhu Y; Cao W; Ni J Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30781552 [TBL] [Abstract][Full Text] [Related]
40. Spray performance simulation and experiment analysis of a greenhouse fixed-pipe twin-fluid cold fogger with different nozzle settings. Li X; Nuyttens D; Xu T; Jin Z; Wang S; Lv X Pest Manag Sci; 2024 Nov; 80(11):6007-6023. PubMed ID: 39136417 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]