These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36680514)

  • 1. Predicting protein flexibility with AlphaFold.
    Ma P; Li DW; Brüschweiler R
    Proteins; 2023 Jun; 91(6):847-855. PubMed ID: 36680514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR hawk-eyed view of AlphaFold2 structures.
    Zweckstetter M
    Protein Sci; 2021 Nov; 30(11):2333-2337. PubMed ID: 34469019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving AlphaFold Predicted Contacts for Alpha-Helical Transmembrane Proteins Using Structural Features.
    Sawhney A; Li J; Liao L
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving AlphaFold predicted contacts in alpha-helical transmembrane proteins structures using structural features.
    Sawhney A; Li J; Liao L
    Res Sq; 2023 Oct; ():. PubMed ID: 37961476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing Fairness of AlphaFold2 Prediction of Protein 3D Structures.
    Abbas U; Chen J; Shao Q
    bioRxiv; 2023 May; ():. PubMed ID: 37293014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of protein conformational diversity on AlphaFold predictions.
    Saldaño T; Escobedo N; Marchetti J; Zea DJ; Mac Donagh J; Velez Rueda AJ; Gonik E; García Melani A; Novomisky Nechcoff J; Salas MN; Peters T; Demitroff N; Fernandez Alberti S; Palopoli N; Fornasari MS; Parisi G
    Bioinformatics; 2022 May; 38(10):2742-2748. PubMed ID: 35561203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AlphaFold2 fails to predict protein fold switching.
    Chakravarty D; Porter LL
    Protein Sci; 2022 Jun; 31(6):e4353. PubMed ID: 35634782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The accuracy of protein structures in solution determined by AlphaFold and NMR.
    Fowler NJ; Williamson MP
    Structure; 2022 Jul; 30(7):925-933.e2. PubMed ID: 35537451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking AlphaFold2 on peptide structure prediction.
    McDonald EF; Jones T; Plate L; Meiler J; Gulsevin A
    Structure; 2023 Jan; 31(1):111-119.e2. PubMed ID: 36525975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AlphaFold2 models indicate that protein sequence determines both structure and dynamics.
    Guo HB; Perminov A; Bekele S; Kedziora G; Farajollahi S; Varaljay V; Hinkle K; Molinero V; Meister K; Hung C; Dennis P; Kelley-Loughnane N; Berry R
    Sci Rep; 2022 Jun; 12(1):10696. PubMed ID: 35739160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An automated pipeline integrating AlphaFold 2 and MODELLER for protein structure prediction.
    Gil Zuluaga FH; D'Arminio N; Bardozzo F; Tagliaferri R; Marabotti A
    Comput Struct Biotechnol J; 2023; 21():5620-5629. PubMed ID: 38047234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting the pathogenicity of missense variants using features derived from AlphaFold2.
    Schmidt A; Röner S; Mai K; Klinkhammer H; Kircher M; Ludwig KU
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of prediction methods for protein structures determined by NMR in CASP14: Impact of AlphaFold2.
    Huang YJ; Zhang N; Bersch B; Fidelis K; Inouye M; Ishida Y; Kryshtafovych A; Kobayashi N; Kuroda Y; Liu G; LiWang A; Swapna GVT; Wu N; Yamazaki T; Montelione GT
    Proteins; 2021 Dec; 89(12):1959-1976. PubMed ID: 34559429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting residue-specific qualities of individual protein models using residual neural networks and graph neural networks.
    Zhao C; Liu T; Wang Z
    Proteins; 2022 Dec; 90(12):2091-2102. PubMed ID: 35842895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationships between protein structure and dynamics from a database of NMR-derived backbone order parameters.
    Goodman JL; Pagel MD; Stone MJ
    J Mol Biol; 2000 Jan; 295(4):963-78. PubMed ID: 10656804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of a Randomized Sequence Scanning Approach in AlphaFold2 and Local Frustration Profiling of Conformational States Enable Interpretable Atomistic Characterization of Conformational Ensembles and Detection of Hidden Allosteric States in the ABL1 Protein Kinase.
    Raisinghani N; Alshahrani M; Gupta G; Tian H; Xiao S; Tao P; Verkhivker GM
    J Chem Theory Comput; 2024 Jun; 20(12):5317-5336. PubMed ID: 38865109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput prediction of protein conformational distributions with subsampled AlphaFold2.
    Monteiro da Silva G; Cui JY; Dalgarno DC; Lisi GP; Rubenstein BM
    Nat Commun; 2024 Mar; 15(1):2464. PubMed ID: 38538622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accuracy of a machine learning method based on structural and locational information from AlphaFold2 for predicting the pathogenicity of TARDBP and FUS gene variants in ALS.
    Hatano Y; Ishihara T; Onodera O
    BMC Bioinformatics; 2023 May; 24(1):206. PubMed ID: 37208601
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving protein structure prediction with extended sequence similarity searches and deep-learning-based refinement in CASP15.
    Oda T
    Proteins; 2023 Dec; 91(12):1712-1723. PubMed ID: 37485822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting residue-wise contact orders in proteins by support vector regression.
    Song J; Burrage K
    BMC Bioinformatics; 2006 Oct; 7():425. PubMed ID: 17014735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.