These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 36681621)
1. The effects of base curve aspheric orthokeratology lenses on corneal topography and peripheral refraction: A randomized prospective trial. Liu T; Ma W; Wang J; Yang B; Dong G; Chen C; Wang X; Liu L Cont Lens Anterior Eye; 2023 Jun; 46(3):101814. PubMed ID: 36681621 [TBL] [Abstract][Full Text] [Related]
2. One-year results for myopia control with aspheric base curve orthokeratology lenses: A prospective randomised clinical trial. Liu T; Chen C; Ma W; Yang B; Wang X; Liu L Ophthalmic Physiol Opt; 2023 Nov; 43(6):1469-1477. PubMed ID: 37584271 [TBL] [Abstract][Full Text] [Related]
3. Time course of the effects of orthokeratology on peripheral refraction and corneal topography. Kang P; Swarbrick H Ophthalmic Physiol Opt; 2013 May; 33(3):277-82. PubMed ID: 23347397 [TBL] [Abstract][Full Text] [Related]
4. The Influence of Different OK Lens Designs on Peripheral Refraction. Kang P; Swarbrick H Optom Vis Sci; 2016 Sep; 93(9):1112-9. PubMed ID: 27232901 [TBL] [Abstract][Full Text] [Related]
5. New Perspective on Myopia Control with Orthokeratology. Kang P; Swarbrick H Optom Vis Sci; 2016 May; 93(5):497-503. PubMed ID: 26889820 [TBL] [Abstract][Full Text] [Related]
6. Can manipulation of orthokeratology lens parameters modify peripheral refraction? Kang P; Gifford P; Swarbrick H Optom Vis Sci; 2013 Nov; 90(11):1237-48. PubMed ID: 24076541 [TBL] [Abstract][Full Text] [Related]
7. Reducing treatment zone diameter in orthokeratology and its effect on peripheral ocular refraction. Gifford P; Tran M; Priestley C; Maseedupally V; Kang P Cont Lens Anterior Eye; 2020 Feb; 43(1):54-59. PubMed ID: 31776061 [TBL] [Abstract][Full Text] [Related]
8. Myopia control using toric orthokeratology (TO-SEE study). Chen C; Cheung SW; Cho P Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):6510-7. PubMed ID: 24003088 [TBL] [Abstract][Full Text] [Related]
9. The effect of corneal power distribution on axial elongation in children using three different orthokeratology lens designs. Zhang Z; Zhou J; Zeng L; Xue F; Zhou X; Chen Z Cont Lens Anterior Eye; 2023 Feb; 46(1):101749. PubMed ID: 36008212 [TBL] [Abstract][Full Text] [Related]
10. [Correlation between the increase in corneal higher-order aberrations and the control of children's myopic anisometropia after wearing orthokeratology lenses]. Sun XX; Zhang Y; Chen YG Zhonghua Yan Ke Za Zhi; 2022 Apr; 58(4):250-258. PubMed ID: 35391511 [No Abstract] [Full Text] [Related]
11. Alterations in peripheral refraction with spectacles, soft contact lenses and orthokeratology during near viewing: implications for myopia control. Damani JM; Annasagaram M; Kumar P; Verkicharla PK Clin Exp Optom; 2022 Sep; 105(7):761-770. PubMed ID: 34538199 [TBL] [Abstract][Full Text] [Related]
12. Short-term changes in ocular biometry and refraction after discontinuation of long-term orthokeratology. Santodomingo-Rubido J; Villa-Collar C; Gilmartin B; Gutiérrez-Ortega R Eye Contact Lens; 2014 Mar; 40(2):84-90. PubMed ID: 24508773 [TBL] [Abstract][Full Text] [Related]
13. Anisomyopia and orthokeratology for myopia control - Axial elongation and relative peripheral refraction. Wang J; Cheung SW; Bian S; Wang X; Liu L; Cho P Ophthalmic Physiol Opt; 2024 Sep; 44(6):1261-1269. PubMed ID: 38989808 [TBL] [Abstract][Full Text] [Related]
14. Do fenestrations affect the performance of orthokeratology lenses? Cho P; Chan B; Cheung SW; Mountford J Optom Vis Sci; 2012 Apr; 89(4):401-10. PubMed ID: 22407256 [TBL] [Abstract][Full Text] [Related]
15. Peripheral refraction, relative peripheral refraction, and axial growth: 18-month data from the randomised study-Clinical study Of Near-sightedness; TReatment with Orthokeratology Lenses (CONTROL study). Jakobsen TM; Søndergaard AP; Møller F Acta Ophthalmol; 2023 Feb; 101(1):e69-e80. PubMed ID: 35941831 [TBL] [Abstract][Full Text] [Related]
16. Change in Corneal Power Distribution in Orthokeratology: A Predictor for the Change in Axial Length. Zhang Z; Chen Z; Chen Z; Zhou J; Zeng L; Xue F; Qu X; Zhou X Transl Vis Sci Technol; 2022 Feb; 11(2):18. PubMed ID: 35142785 [TBL] [Abstract][Full Text] [Related]
17. Central and Peripheral Corneal Power Change in Myopic Orthokeratology and Its Relationship With 2-Year Axial Length Change. Zhong Y; Chen Z; Xue F; Miao H; Zhou X Invest Ophthalmol Vis Sci; 2015 Jul; 56(8):4514-9. PubMed ID: 26200489 [TBL] [Abstract][Full Text] [Related]
18. Effect of orthokeratology in patients with myopic regression after refractive surgery. Park YM; Park YK; Lee JE; Lee JS Cont Lens Anterior Eye; 2016 Apr; 39(2):167-71. PubMed ID: 26604052 [TBL] [Abstract][Full Text] [Related]
19. The Effect of Lens Design on Corneal Power Distribution in Orthokeratology. Zhang Z; Chen Z; Zhou J; Pauné J; Xue F; Zeng L; Qu X; Zhou X Optom Vis Sci; 2022 Apr; 99(4):363-371. PubMed ID: 35293879 [TBL] [Abstract][Full Text] [Related]
20. Predictive Role of Paracentral Corneal Toricity Using Elevation Data for Treatment Zone Decentration During Orthokeratology. Li Z; Cui D; Long W; Hu Y; He L; Yang X Curr Eye Res; 2018 Sep; 43(9):1083-1089. PubMed ID: 29806506 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]