BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36682168)

  • 1. Investigation of the difference in color enhancement effect on cyanidin-3-O-glucoside by phenolic acids and the interaction mechanism.
    Cao Y; Zhao B; Li Y; Gao H; Xia Q; Fang Z
    Food Chem; 2023 Jun; 411():135409. PubMed ID: 36682168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Co-Pigmentation Mechanism and Thermal Reaction Kinetics of Mulberry Anthocyanins with Different Phenolic Acids.
    Chen X; Gao Q; Liao S; Zou Y; Yan J; Li Q
    Foods; 2022 Nov; 11(23):. PubMed ID: 36496612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyanidin-3-glucoside and its phenolic acid metabolites attenuate visible light-induced retinal degeneration in vivo via activation of Nrf2/HO-1 pathway and NF-κB suppression.
    Wang Y; Huo Y; Zhao L; Lu F; Wang O; Yang X; Ji B; Zhou F
    Mol Nutr Food Res; 2016 Jul; 60(7):1564-77. PubMed ID: 26991594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of phenolic acids/aldehydes on color intensification of cyanidin-3-O-glucoside, the main anthocyanin in sugarcane (Saccharum officinarum L.).
    Xu Z; Wang C; Yan H; Zhao Z; You L; Ho CT
    Food Chem; 2022 Mar; 373(Pt A):131396. PubMed ID: 34710683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A molecular docking and molecular dynamics simulation study on the interaction between cyanidin-3-O-glucoside and major proteins in cow's milk.
    Pan F; Li J; Zhao L; Tuersuntuoheti T; Mehmood A; Zhou N; Hao S; Wang C; Guo Y; Lin W
    J Food Biochem; 2021 Jan; 45(1):e13570. PubMed ID: 33222207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protective effect of amino acids on the stability of bayberry anthocyanins and the interaction mechanism between l-methionine and cyanidin-3-O-glycoside.
    Nie M; Wang L; Lu S; Wang Y; Zheng M; Fang Z
    Food Chem; 2022 Dec; 396():133689. PubMed ID: 35849982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of gallic/ferulic/caffeic acids on colour intensification and anthocyanin stability.
    Qian BJ; Liu JH; Zhao SJ; Cai JX; Jing P
    Food Chem; 2017 Aug; 228():526-532. PubMed ID: 28317759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectrophotometric study of the copigmentation of malvidin 3-O-glucoside with p-coumaric, vanillic and syringic acids.
    Malaj N; De Simone BC; Quartarolo AD; Russo N
    Food Chem; 2013 Dec; 141(4):3614-20. PubMed ID: 23993528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of hydroxyphenyl-pyranoanthocyanins derived from cyanidin-3-O-glucoside and effects of high-pressure processing on the transformation efficiency.
    Zeng Y; Li X; Yuan K; Chen B; Zhang W; Wang C; Sun J; Ramaswamy HS; Bai W
    Food Chem; 2023 May; 408():135247. PubMed ID: 36566539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction and binding mechanism of cyanidin-3-O-glucoside to ovalbumin in varying pH conditions: A spectroscopic and molecular docking study.
    Fu X; Belwal T; He Y; Xu Y; Li L; Luo Z
    Food Chem; 2020 Aug; 320():126616. PubMed ID: 32203835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular interaction of cyanidin-3-
    Ma Z; Prasanna G; Jiang L; Jing P
    J Biomol Struct Dyn; 2020 Apr; 38(6):1858-1867. PubMed ID: 31084417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation.
    Fan L; Wang Y; Xie P; Zhang L; Li Y; Zhou J
    Food Chem; 2019 Mar; 275():299-308. PubMed ID: 30724200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of caseins nanoparticles to improve the stability of cyanidin 3-O-glucoside.
    Ouyang Y; Chen L; Qian L; Lin X; Fan X; Teng H; Cao H
    Food Chem; 2020 Jul; 317():126418. PubMed ID: 32087512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of the synergistic inhibitory effect of cyanidin-3-O-glucoside and catechin on pancreatic lipase.
    Wang Y; Chen L; Liu H; Xie J; Yin W; Xu Z; Ma H; Wu W; Zheng M; Liu M; Liu J
    Food Chem; 2023 Mar; 404(Pt B):134672. PubMed ID: 36323025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Copigmentation of malvidin-3-O-glucoside with five hydroxybenzoic acids in red wine model solutions: experimental and theoretical investigations.
    Zhang B; Liu R; He F; Zhou PP; Duan CQ
    Food Chem; 2015 Mar; 170():226-33. PubMed ID: 25306339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of co-pigments on anthocyanins of Rhododendron arboreum and insights into interaction mechanism.
    Sendri N; Singh S; Sharma B; Purohit R; Bhandari P
    Food Chem; 2023 Nov; 426():136571. PubMed ID: 37331145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different spectroscopic and molecular modeling studies on the interaction between cyanidin-3-O-glucoside and bovine serum albumin.
    Tang L; Zhang D; Xu S; Zuo H; Zuo C; Li Y
    Luminescence; 2014 Mar; 29(2):168-75. PubMed ID: 23723132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on the interactional characterization of preheated silkworm pupae protein (SPP) with anthocyanins (C3G) and their effect on anthocyanin stability.
    Attaribo T; Jiang X; Huang G; Zhang B; Xin X; Zhang Y; Zhang N; Gui Z
    Food Chem; 2020 Oct; 326():126904. PubMed ID: 32413765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of phenolic acids on growth and inactivation of Oenococcus oeni and Lactobacillus hilgardii.
    Campos FM; Couto JA; Hogg TA
    J Appl Microbiol; 2003; 94(2):167-74. PubMed ID: 12534807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of organic acid on cyanidin-3-O-glucoside oxidation mediated by iron in model Chinese bayberry wine.
    Zhang Z; Li J; Fan L; Duan Z
    Food Chem; 2020 Apr; 310():125980. PubMed ID: 31838371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.