BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 36682298)

  • 1. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea.
    Yang D; Shi H; Zhang K; Liu X; Ma L
    Int J Food Microbiol; 2023 Mar; 388():110089. PubMed ID: 36682298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perillaldehyde Functions as a Potential Antifungal Agent by Triggering Metacaspase-Independent Apoptosis in Botrytis cinerea.
    Wang G; Wang Y; Wang K; Zhao H; Liu M; Liang W; Li D
    Microbiol Spectr; 2023 Jun; 11(3):e0052623. PubMed ID: 37191530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea.
    Gao P; Qin J; Li D; Zhou S
    PLoS One; 2018; 13(1):e0190932. PubMed ID: 29320571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal activities of fluoroindoles against the postharvest pathogen Botrytis cinerea: In vitro and in silico approaches.
    Raorane CJ; Raj V; Lee JH; Lee J
    Int J Food Microbiol; 2022 Feb; 362():109492. PubMed ID: 34861563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal Activity of Eugenol Derivatives against
    Olea AF; Bravo A; Martínez R; Thomas M; Sedan C; Espinoza L; Zambrano E; Carvajal D; Silva-Moreno E; Carrasco H
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30934962
    [No Abstract]   [Full Text] [Related]  

  • 6. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficacy of Natamycin Against Gray Mold of Stored Mandarin Fruit Caused by Isolates of
    Saito S; Wang F; Xiao CL
    Plant Dis; 2020 Mar; 104(3):787-792. PubMed ID: 31940447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes.
    Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q
    Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Semi-Synthesis of Chloroxaloterpin A and B and Their Antifungal Activity against
    Zhang L; Wang X; Bi Y; Yu Z
    J Agric Food Chem; 2022 Jun; 70(23):7070-7076. PubMed ID: 35652483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodynamic Inactivation in agriculture: combating fungal phytopathogens resistant to conventional treatment.
    Jernej L; Frost DSM; Walker AS; Liu J; Fefer M; Plaetzer K
    Photochem Photobiol Sci; 2024 Jun; 23(6):1117-1128. PubMed ID: 38750328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biological control of Botrytis cinerea on tomato plants using Streptomyces ahygroscopicus strain CK-15.
    Ge BB; Cheng Y; Liu Y; Liu BH; Zhang KC
    Lett Appl Microbiol; 2015 Dec; 61(6):596-602. PubMed ID: 26400053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium Valproate Is Effective Against
    Xu Y; Wang Y; Wang L; Liang W; Yang Q
    Phytopathology; 2022 Jun; 112(6):1264-1272. PubMed ID: 34982575
    [No Abstract]   [Full Text] [Related]  

  • 13. Crucial Role of the Ca
    Wang Y; Yu Y; Hou YP; Mao XW; Liu ZL; Cui J; Wang B; Xu S; Qian YY; Jiang YQ; Wei M; Song PP
    J Agric Food Chem; 2023 Jun; 71(25):9772-9781. PubMed ID: 37313981
    [No Abstract]   [Full Text] [Related]  

  • 14. Macrolactin R from Bacillus siamensis and its antifungal activity against Botrytis cinerea.
    Ni J; Yu L; Li F; Li Y; Zhang M; Deng Y; Liu X
    World J Microbiol Biotechnol; 2023 Mar; 39(5):117. PubMed ID: 36918502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycofumigation of postharvest blueberries with volatile compounds from Trichoderma atroviride IC-11 is a promising tool to control rots caused by Botrytis cinerea.
    Bello F; Montironi ID; Medina MB; Munitz MS; Ferreira FV; Williman C; Vázquez D; Cariddi LN; Musumeci MA
    Food Microbiol; 2022 Sep; 106():104040. PubMed ID: 35690443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fungicidal activity of novel quinazolin-6-ylcarboxylates and mode of action on Botrytis cinerea.
    Xu J; Yan D; Chen Y; Cai D; Huang F; Zhu L; Zhang X; Luan S; Xiao C; Huang Q
    Pest Manag Sci; 2023 Sep; 79(9):3022-3032. PubMed ID: 36966485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits.
    Nguyen XH; Naing KW; Lee YS; Moon JH; Lee JH; Kim KY
    J Basic Microbiol; 2015 May; 55(5):625-34. PubMed ID: 25081931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary Mode of Action of the Novel Sulfonamide Fungicide against
    Yan X; Chen S; Sun W; Zhou X; Yang D; Yuan H; Wang D
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163447
    [No Abstract]   [Full Text] [Related]  

  • 19. Endophytic bacteria from strawberry plants control gray mold in fruits via production of antifungal compounds against Botrytis cinerea L.
    Moura GGD; Barros AV; Machado F; Martins AD; Silva CMD; Durango LGC; Forim M; Alves E; Pasqual M; Doria J
    Microbiol Res; 2021 Oct; 251():126793. PubMed ID: 34325193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of osthol-based botanical fungicides and their antifungal application in crop protection.
    Guo Y; Chen J; Ren D; Du B; Wu L; Zhang Y; Wang Z; Qian S
    Bioorg Med Chem; 2021 Jun; 40():116184. PubMed ID: 33971489
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.