These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 36682568)

  • 41. Modelling evolution of a large, glacier-fed lake in the Western Indian Himalaya.
    Gantayat P; Ramsankaran R
    Sci Rep; 2023 Feb; 13(1):1840. PubMed ID: 36725895
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monitoring the Spatiotemporal Difference in Glacier Elevation on Bogda Mountain from 2000 to 2017.
    Du W; Shi N; Xu L; Zhang S; Ma D; Wang S
    Int J Environ Res Public Health; 2021 Jun; 18(12):. PubMed ID: 34204658
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ice thickness distribution of Himalayan glaciers inferred from DInSAR-based glacier surface velocity.
    Nela BR; Singh G; Kulkarni AV
    Environ Monit Assess; 2022 Oct; 195(1):15. PubMed ID: 36271202
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The significance of shifts in precipitation patterns: modelling the impacts of climate change and glacier retreat on extreme flood events in Denali National Park, Alaska.
    Crossman J; Futter MN; Whitehead PG
    PLoS One; 2013; 8(9):e74054. PubMed ID: 24023925
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Understanding and Predicting the Fate of Semivolatile Organic Pesticides in a Glacier-Fed Lake Using a Multimedia Chemical Fate Model.
    Wu X; Davie-Martin CL; Steinlin C; Hageman KJ; Cullen NJ; Bogdal C
    Environ Sci Technol; 2017 Oct; 51(20):11752-11760. PubMed ID: 28925251
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Investigating mass balance of Parvati glacier in Himalaya using satellite imagery based model.
    Tak S; Keshari AK
    Sci Rep; 2020 Jul; 10(1):12211. PubMed ID: 32699284
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Less extreme and earlier outbursts of ice-dammed lakes since 1900.
    Veh G; Lützow N; Tamm J; Luna LV; Hugonnet R; Vogel K; Geertsema M; Clague JJ; Korup O
    Nature; 2023 Feb; 614(7949):701-707. PubMed ID: 36792828
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Geomorphic processes of a dammed palaeo-lake in the middle Yarlung Tsangpo River, Tibet.
    Hu HP; Liu JH; Feng JL; Ye CS; Gong ZJ; Lv F; Chen F; Chen LQ; Du DD
    Sci Total Environ; 2022 Mar; 811():151949. PubMed ID: 34838554
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Temperate Alpine Glacier as a Reservoir of Polychlorinated Biphenyls: Model Results of Incorporation, Transport, and Release.
    Steinlin C; Bogdal C; Lüthi MP; Pavlova PA; Schwikowski M; Zennegg M; Schmid P; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2016 Jun; 50(11):5572-9. PubMed ID: 27164482
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Maker Buoy Variants for Water Level Monitoring and Tracking Drifting Objects in Remote Areas of Greenland.
    Carlson DF; Pavalko WJ; Petersen D; Olsen M; Hass AE
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32106576
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Source Environments of the Microbiome in Perennially Ice-Covered Lake Untersee, Antarctica.
    Weisleitner K; Perras A; Moissl-Eichinger C; Andersen DT; Sattler B
    Front Microbiol; 2019; 10():1019. PubMed ID: 31134036
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glacial Influence Affects Modularity in Bacterial Community Structure in Three Deep Andean North-Patagonian Lakes.
    Modenutti B; Martyniuk N; Bastidas Navarro M; Balseiro E
    Microb Ecol; 2023 Oct; 86(3):1869-1880. PubMed ID: 36735066
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glacier protection laws: Potential conflicts in managing glacial hazards and adapting to climate change.
    Anacona PI; Kinney J; Schaefer M; Harrison S; Wilson R; Segovia A; Mazzorana B; Guerra F; Farías D; Reynolds JM; Glasser NF
    Ambio; 2018 Dec; 47(8):835-845. PubMed ID: 29536432
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Patterns and potential drivers of dramatic changes in Tibetan lakes, 1972-2010.
    Li Y; Liao J; Guo H; Liu Z; Shen G
    PLoS One; 2014; 9(11):e111890. PubMed ID: 25372787
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Greenland-wide inventory of ice marginal lakes using a multi-method approach.
    How P; Messerli A; Mätzler E; Santoro M; Wiesmann A; Caduff R; Langley K; Bojesen MH; Paul F; Kääb A; Carrivick JL
    Sci Rep; 2021 Feb; 11(1):4481. PubMed ID: 33627684
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Study of dynamics in surface ice flow rate of glaciers in Hunza basin, Karakoram.
    Sivalingam S; Murugesan GP; Kulkarni AV; Dhulipala K; Devaraj S
    Environ Sci Pollut Res Int; 2023 May; 30(22):62782-62802. PubMed ID: 36944837
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Autotrophic microbial community succession from glacier terminus to downstream waters on the Tibetan Plateau.
    Kong W; Liu J; Ji M; Yue L; Kang S; Morgan-Kiss RM
    FEMS Microbiol Ecol; 2019 Jun; 95(6):. PubMed ID: 31125073
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Release of legacy pollutants from melting glaciers: model evidence and conceptual understanding.
    Bogdal C; Nikolic D; Lüthi MP; Schenker U; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2010 Jun; 44(11):4063-9. PubMed ID: 20446692
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microbial diversity in the snow, a moraine lake and a stream in Himalayan glacier.
    Liu Y; Yao T; Jiao N; Tian L; Hu A; Yu W; Li S
    Extremophiles; 2011 May; 15(3):411-21. PubMed ID: 21468724
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Influential aspects of glacial resource for establishing Kuhl system (gravity flow irrigation) in the Hindu Kush, Karakoram and Himalaya ranges.
    Ashraf A; Iqbal A
    Sci Total Environ; 2018 Sep; 636():487-499. PubMed ID: 29709866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.