BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 36682862)

  • 1. Bioinformatic prediction and experimental validation of RiPP recognition elements.
    Shelton KE; Mitchell DA
    Methods Enzymol; 2023; 679():191-233. PubMed ID: 36682862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RRE-Finder: a Genome-Mining Tool for Class-Independent RiPP Discovery.
    Kloosterman AM; Shelton KE; van Wezel GP; Medema MH; Mitchell DA
    mSystems; 2020 Sep; 5(5):. PubMed ID: 32873609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptidase Activation by a Leader Peptide-Bound RiPP Recognition Element.
    Kretsch AM; Gadgil MG; DiCaprio AJ; Barrett SE; Kille BL; Si Y; Zhu L; Mitchell DA
    Biochemistry; 2023 Feb; 62(4):956-967. PubMed ID: 36734655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome mining unveils a class of ribosomal peptides with two amino termini.
    Ren H; Dommaraju SR; Huang C; Cui H; Pan Y; Nesic M; Zhu L; Sarlah D; Mitchell DA; Zhao H
    Nat Commun; 2023 Mar; 14(1):1624. PubMed ID: 36959188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis.
    Burkhart BJ; Hudson GA; Dunbar KL; Mitchell DA
    Nat Chem Biol; 2015 Aug; 11(8):564-70. PubMed ID: 26167873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome mining unveils a class of ribosomal peptides with two amino termini.
    Ren H; Dommaraju SR; Huang C; Cui H; Pan Y; Nesic M; Zhu L; Sarlah D; Mitchell DA; Zhao H
    bioRxiv; 2023 Mar; ():. PubMed ID: 36945508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioinformatic Atlas of Radical SAM Enzyme-Modified RiPP Natural Products Reveals an Isoleucine-Tryptophan Crosslink.
    Clark KA; Seyedsayamdost MR
    J Am Chem Soc; 2022 Oct; 144(39):17876-17888. PubMed ID: 36128669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New developments in RiPP discovery, enzymology and engineering.
    Montalbán-López M; Scott TA; Ramesh S; Rahman IR; van Heel AJ; Viel JH; Bandarian V; Dittmann E; Genilloud O; Goto Y; Grande Burgos MJ; Hill C; Kim S; Koehnke J; Latham JA; Link AJ; Martínez B; Nair SK; Nicolet Y; Rebuffat S; Sahl HG; Sareen D; Schmidt EW; Schmitt L; Severinov K; Süssmuth RD; Truman AW; Wang H; Weng JK; van Wezel GP; Zhang Q; Zhong J; Piel J; Mitchell DA; Kuipers OP; van der Donk WA
    Nat Prod Rep; 2021 Jan; 38(1):130-239. PubMed ID: 32935693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of the peptide-modifying radical SAM enzyme SuiB elucidate the basis of substrate recognition.
    Davis KM; Schramma KR; Hansen WA; Bacik JP; Khare SD; Seyedsayamdost MR; Ando N
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):10420-10425. PubMed ID: 28893989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expansion of RiPP biosynthetic space through integration of pan-genomics and machine learning uncovers a novel class of lanthipeptides.
    Kloosterman AM; Cimermancic P; Elsayed SS; Du C; Hadjithomas M; Donia MS; Fischbach MA; van Wezel GP; Medema MH
    PLoS Biol; 2020 Dec; 18(12):e3001026. PubMed ID: 33351797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Omics-based strategies to discover novel classes of RiPP natural products.
    Kloosterman AM; Medema MH; van Wezel GP
    Curr Opin Biotechnol; 2021 Jun; 69():60-67. PubMed ID: 33383297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genomic charting of ribosomally synthesized natural product chemical space facilitates targeted mining.
    Skinnider MA; Johnston CW; Edgar RE; Dejong CA; Merwin NJ; Rees PN; Magarvey NA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):E6343-E6351. PubMed ID: 27698135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steric complementarity directs sequence promiscuous leader binding in RiPP biosynthesis.
    Chekan JR; Ongpipattanakul C; Nair SK
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24049-24055. PubMed ID: 31719203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The genomic landscape of ribosomal peptides containing thiazole and oxazole heterocycles.
    Cox CL; Doroghazi JR; Mitchell DA
    BMC Genomics; 2015 Oct; 16():778. PubMed ID: 26462797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosomally synthesized and post-translationally modified peptide natural products: new insights into the role of leader and core peptides during biosynthesis.
    Yang X; van der Donk WA
    Chemistry; 2013 Jun; 19(24):7662-77. PubMed ID: 23666908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Mining and Discovery of Imiditides, a Family of RiPPs with a Class-Defining Aspartimide Modification.
    Cao L; Do T; Zhu A; Duan J; Alam N; Link AJ
    J Am Chem Soc; 2023 Aug; 145(34):18834-18845. PubMed ID: 37595015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disordered regions in proteusin peptides guide post-translational modification by a flavin-dependent RiPP brominase.
    Nguyen NA; Vidya FNU; Yennawar NH; Wu H; McShan AC; Agarwal V
    Nat Commun; 2024 Feb; 15(1):1265. PubMed ID: 38341413
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cytochromes P450 involved in bacterial RiPP biosyntheses.
    Kunakom S; Otani H; Udwary DW; Doering DT; Mouncey NJ
    J Ind Microbiol Biotechnol; 2023 Feb; 50(1):. PubMed ID: 36931895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome Mining and Discovery of Imiditides, a Novel Family of RiPPs with a Class-defining Aspartimide Modification.
    Cao L; Do T; Zhu AD; Alam N; Link AJ
    bioRxiv; 2023 Apr; ():. PubMed ID: 37066262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of a poly-cyclopropylglycine-containing peptide via bioinformatic mapping of radical S-adenosylmethionine enzymes.
    Kostenko A; Lien Y; Mendauletova A; Ngendahimana T; Novitskiy IM; Eaton SS; Latham JA
    J Biol Chem; 2022 May; 298(5):101881. PubMed ID: 35367210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.