These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 36682862)

  • 21. Uncovering the unexplored diversity of thioamidated ribosomal peptides in Actinobacteria using the RiPPER genome mining tool.
    Santos-Aberturas J; Chandra G; Frattaruolo L; Lacret R; Pham TH; Vior NM; Eyles TH; Truman AW
    Nucleic Acids Res; 2019 May; 47(9):4624-4637. PubMed ID: 30916321
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advances in the Discovery and Biosynthetic Study of Eukaryotic RiPP Natural Products.
    Luo S; Dong SH
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31003555
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tryptophan-Centric Bioinformatics Identifies New Lasso Peptide Modifications.
    Harris LA; Saad H; Shelton KE; Zhu L; Guo X; Mitchell DA
    Biochemistry; 2024 Apr; 63(7):865-879. PubMed ID: 38498885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome mining for ribosomally synthesised and post-translationally modified peptides (RiPPs) reveals undiscovered bioactive potentials of actinobacteria.
    Poorinmohammad N; Bagheban-Shemirani R; Hamedi J
    Antonie Van Leeuwenhoek; 2019 Oct; 112(10):1477-1499. PubMed ID: 31123844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A User Guide for the Identification of New RiPP Biosynthetic Gene Clusters Using a RiPPER-Based Workflow.
    Moffat AD; Santos-Aberturas J; Chandra G; Truman AW
    Methods Mol Biol; 2021; 2296():227-247. PubMed ID: 33977452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Out for a RiPP: challenges and advances in genome mining of ribosomal peptides from fungi.
    Kessler SC; Chooi YH
    Nat Prod Rep; 2022 Feb; 39(2):222-230. PubMed ID: 34581394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ribosomal Natural Products, Tailored To Fit.
    Funk MA; van der Donk WA
    Acc Chem Res; 2017 Jul; 50(7):1577-1586. PubMed ID: 28682627
    [TBL] [Abstract][Full Text] [Related]  

  • 28. P450-Modified Multicyclic Cyclophane-Containing Ribosomally Synthesized and Post-Translationally Modified Peptides.
    Liu CL; Wang ZJ; Shi J; Yan ZY; Zhang GD; Jiao RH; Tan RX; Ge HM
    Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202314046. PubMed ID: 38072825
    [TBL] [Abstract][Full Text] [Related]  

  • 29. RiPPMiner: a bioinformatics resource for deciphering chemical structures of RiPPs based on prediction of cleavage and cross-links.
    Agrawal P; Khater S; Gupta M; Sain N; Mohanty D
    Nucleic Acids Res; 2017 Jul; 45(W1):W80-W88. PubMed ID: 28499008
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RiPPMiner-Genome: A Web Resource for Automated Prediction of Crosslinked Chemical Structures of RiPPs by Genome Mining.
    Agrawal P; Amir S; Deepak ; Barua D; Mohanty D
    J Mol Biol; 2021 May; 433(11):166887. PubMed ID: 33972022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure Prediction and Synthesis of Pyridine-Based Macrocyclic Peptide Natural Products.
    Hudson GA; Hooper AR; DiCaprio AJ; Sarlah D; Mitchell DA
    Org Lett; 2021 Jan; 23(2):253-256. PubMed ID: 32845158
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolome-guided genome mining of RiPP natural products.
    Zdouc MM; van der Hooft JJJ; Medema MH
    Trends Pharmacol Sci; 2023 Aug; 44(8):532-541. PubMed ID: 37391295
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel types of RiPP-modifying enzymes.
    Richter D; Piel J
    Curr Opin Chem Biol; 2024 Jun; 80():102463. PubMed ID: 38729090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering of new-to-nature ribosomally synthesized and post-translationally modified peptide natural products.
    Wu C; van der Donk WA
    Curr Opin Biotechnol; 2021 Jun; 69():221-231. PubMed ID: 33556835
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome mining strategies for ribosomally synthesised and post-translationally modified peptides.
    Russell AH; Truman AW
    Comput Struct Biotechnol J; 2020; 18():1838-1851. PubMed ID: 32728407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ribosomally synthesized and post-translationally modified peptide natural product discovery in the genomic era.
    Hetrick KJ; van der Donk WA
    Curr Opin Chem Biol; 2017 Jun; 38():36-44. PubMed ID: 28260651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolutionary Spread of Distinct O-methyltransferases Guides the Discovery of Unique Isoaspartate-Containing Peptides, Pamtides.
    Lee H; Park SH; Kim J; Lee J; Koh MS; Lee JH; Kim S
    Adv Sci (Weinh); 2024 Jan; 11(2):e2305946. PubMed ID: 37987032
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NeuRiPP: Neural network identification of RiPP precursor peptides.
    de Los Santos ELC
    Sci Rep; 2019 Sep; 9(1):13406. PubMed ID: 31527713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature.
    Russell AH; Vior NM; Hems ES; Lacret R; Truman AW
    Chem Sci; 2021 Sep; 12(35):11769-11778. PubMed ID: 34659714
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CanE, an Iron/2-Oxoglutarate-Dependent Lasso Peptide Hydroxylase from
    Zhang C; Seyedsayamdost MR
    ACS Chem Biol; 2020 Apr; 15(4):890-894. PubMed ID: 32191027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.