These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36682991)

  • 41. Continual learning with attentive recurrent neural networks for temporal data classification.
    Yin SY; Huang Y; Chang TY; Chang SF; Tseng VS
    Neural Netw; 2023 Jan; 158():171-187. PubMed ID: 36459884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disentangling Abstraction from Statistical Pattern Matching in Human and Machine Learning.
    Kumar S; Dasgupta I; Daw ND; Cohen JD; Griffiths TL
    PLoS Comput Biol; 2023 Aug; 19(8):e1011316. PubMed ID: 37624841
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A critique of pure learning and what artificial neural networks can learn from animal brains.
    Zador AM
    Nat Commun; 2019 Aug; 10(1):3770. PubMed ID: 31434893
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient, continual, and generalized learning in the brain - neural mechanism of Mental Schema 2.0.
    Ohki T; Kunii N; Chao ZC
    Rev Neurosci; 2023 Dec; 34(8):839-868. PubMed ID: 36960579
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SuperFormer: Continual learning superposition method for text classification.
    Zeman M; Pucer JF; Kononenko I; Bosnić Z
    Neural Netw; 2023 Apr; 161():418-436. PubMed ID: 36805259
    [TBL] [Abstract][Full Text] [Related]  

  • 46. How to incorporate biological insights into network models and why it matters.
    Bernáez Timón L; Ekelmans P; Kraynyukova N; Rose T; Busse L; Tchumatchenko T
    J Physiol; 2023 Aug; 601(15):3037-3053. PubMed ID: 36069408
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Task representations in neural networks trained to perform many cognitive tasks.
    Yang GR; Joglekar MR; Song HF; Newsome WT; Wang XJ
    Nat Neurosci; 2019 Feb; 22(2):297-306. PubMed ID: 30643294
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Hierarchical Multitask Learning Approach for the Recognition of Activities of Daily Living Using Data from Wearable Sensors.
    Nisar MA; Shirahama K; Irshad MT; Huang X; Grzegorzek M
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837064
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Graph-Based Disease Prediction in Neuroimaging: Investigating the Impact of Feature Selection.
    Kiakou D; Adamopoulos A; Scherf N
    Adv Exp Med Biol; 2023; 1424():223-230. PubMed ID: 37486497
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Objective Supervised Machine Learning-Based Classification and Inference of Biological Neuronal Networks.
    Barros MT; Siljak H; Mullen P; Papadias C; Hyttinen J; Marchetti N
    Molecules; 2022 Sep; 27(19):. PubMed ID: 36234792
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Model metamers reveal divergent invariances between biological and artificial neural networks.
    Feather J; Leclerc G; Mądry A; McDermott JH
    Nat Neurosci; 2023 Nov; 26(11):2017-2034. PubMed ID: 37845543
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anti-transfer learning for task invariance in convolutional neural networks for speech processing.
    Guizzo E; Weyde T; Tarroni G
    Neural Netw; 2021 Oct; 142():238-251. PubMed ID: 34034071
    [TBL] [Abstract][Full Text] [Related]  

  • 53. GeneralizedDTA: combining pre-training and multi-task learning to predict drug-target binding affinity for unknown drug discovery.
    Lin S; Shi C; Chen J
    BMC Bioinformatics; 2022 Sep; 23(1):367. PubMed ID: 36071406
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Hebbian semi-supervised learning in a sample efficiency setting.
    Lagani G; Falchi F; Gennaro C; Amato G
    Neural Netw; 2021 Nov; 143():719-731. PubMed ID: 34438195
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the exploration-exploitation balance with bio-inspired neural networks.
    Triche A; Maida AS; Kumar A
    Neural Netw; 2022 Jul; 151():16-33. PubMed ID: 35367735
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Supervised machine learning tools: a tutorial for clinicians.
    Lo Vercio L; Amador K; Bannister JJ; Crites S; Gutierrez A; MacDonald ME; Moore J; Mouches P; Rajashekar D; Schimert S; Subbanna N; Tuladhar A; Wang N; Wilms M; Winder A; Forkert ND
    J Neural Eng; 2020 Nov; 17(6):. PubMed ID: 33036008
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Population pharmacokinetic model selection assisted by machine learning.
    Sibieude E; Khandelwal A; Girard P; Hesthaven JS; Terranova N
    J Pharmacokinet Pharmacodyn; 2022 Apr; 49(2):257-270. PubMed ID: 34708337
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Patient representation learning and interpretable evaluation using clinical notes.
    Sushil M; Šuster S; Luyckx K; Daelemans W
    J Biomed Inform; 2018 Aug; 84():103-113. PubMed ID: 29966746
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Continual Learning for Activity Recognition.
    Kumar Sah R; Mirzadeh SI; Ghasemzadeh H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():2416-2420. PubMed ID: 36085745
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A wholistic view of continual learning with deep neural networks: Forgotten lessons and the bridge to active and open world learning.
    Mundt M; Hong Y; Pliushch I; Ramesh V
    Neural Netw; 2023 Mar; 160():306-336. PubMed ID: 36724547
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.