These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36683254)

  • 61. Design-encoded dual shape-morphing and shape-memory in 4D printed polymer parts toward cellularized vascular grafts.
    Choudhury S; Joshi A; Baghel VS; Ananthasuresh GK; Asthana S; Homer-Vanniasinkam S; Chatterjee K
    J Mater Chem B; 2024 Jun; 12(23):5678-5689. PubMed ID: 38747702
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process.
    Kaščák Ľ; Varga J; Bidulská J; Bidulský R
    Materials (Basel); 2023 Dec; 16(24):. PubMed ID: 38138795
    [TBL] [Abstract][Full Text] [Related]  

  • 63. 3D Printed Shape Memory Polymers Produced via Direct Pellet Extrusion.
    Cersoli T; Cresanto A; Herberger C; MacDonald E; Cortes P
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33467774
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Advances in Additive Manufacturing of Polymer-Fused Deposition Modeling on Textiles: From 3D Printing to Innovative 4D Printing-A Review.
    Franco Urquiza EA
    Polymers (Basel); 2024 Mar; 16(5):. PubMed ID: 38475383
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Prestrain Programmable 4D Printing of Nanoceramic Composites with Bioinspired Microstructure.
    Li T; Liu Q; Qi H; Zhai W
    Small; 2022 Nov; 18(47):e2204032. PubMed ID: 36180413
    [TBL] [Abstract][Full Text] [Related]  

  • 66. 4D Printing of Body Temperature-Responsive Hydrogels Based on Poly(acrylic acid) with Shape-Memory and Self-Healing Abilities.
    Abdullah T; Okay O
    ACS Appl Bio Mater; 2023 Feb; 6(2):703-711. PubMed ID: 36700540
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Surface functionalized 3D printed metal structures as next generation recyclable SERS substrates.
    Malik U; Hubesch R; Koley P; Mazur M; Mehla S; Butti SK; Brandt M; Selvakannan PR; Bhargava S
    Chem Commun (Camb); 2023 Nov; 59(90):13406-13420. PubMed ID: 37850470
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Artificial Intelligence Assisted Fabrication of 3D, 4D and 5D Printed Formulations or Devices for Drug Delivery.
    Sharma KS
    Curr Drug Deliv; 2023; 20(6):752-769. PubMed ID: 36503474
    [TBL] [Abstract][Full Text] [Related]  

  • 69. 4D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications.
    Kalogeropoulou M; Díaz-Payno PJ; Mirzaali MJ; van Osch GJVM; Fratila-Apachitei LE; Zadpoor AA
    Biofabrication; 2024 Feb; 16(2):. PubMed ID: 38224616
    [TBL] [Abstract][Full Text] [Related]  

  • 70. 4D Printing of Electroactive Triple-Shape Composites.
    Razzaq MY; Gonzalez-Gutierrez J; Farhan M; Das R; Ruch D; Westermann S; Schmidt DF
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850116
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices.
    Wang Y; Cui H; Esworthy T; Mei D; Wang Y; Zhang LG
    Adv Mater; 2022 May; 34(20):e2109198. PubMed ID: 34951494
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Advances in Laser Powder Bed Fusion of Tungsten, Tungsten Alloys, and Tungsten-Based Composites.
    Li H; Shen Y; Wu X; Wang D; Yang Y
    Micromachines (Basel); 2024 Jul; 15(8):. PubMed ID: 39203618
    [TBL] [Abstract][Full Text] [Related]  

  • 73. An insight into biomimetic 4D printing.
    Kanu NJ; Gupta E; Vates UK; Singh GK
    RSC Adv; 2019 Nov; 9(65):38209-38226. PubMed ID: 35541793
    [TBL] [Abstract][Full Text] [Related]  

  • 74. 4D Printing of High-Performance Thermal-Responsive Liquid Metal Elastomers Driven by Embedded Microliquid Chambers.
    Zhou LY; Ye JH; Fu JZ; Gao Q; He Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):12068-12074. PubMed ID: 32066245
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Parameter Optimization for Printing Ti6Al4V-Alloy Patient-Customized Orthopaedic Implants by Laser Powder Bed Fusion Using Physio-mechanical Properties and Biological Evaluations.
    Gaur B; Ghyar R; Bhallamudi R
    Indian J Orthop; 2022 May; 56(5):797-804. PubMed ID: 35547343
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Characterization of Anisotropic Shape Memory Behavior of Thermoresponsive Components in 4D Printing.
    Zhao J; Han M; Li L
    3D Print Addit Manuf; 2024 Jun; 11(3):1055-1063. PubMed ID: 39359598
    [TBL] [Abstract][Full Text] [Related]  

  • 77. 4D Printing of Freestanding Liquid Crystal Elastomers via Hybrid Additive Manufacturing.
    Peng X; Wu S; Sun X; Yue L; Montgomery SM; Demoly F; Zhou K; Zhao RR; Qi HJ
    Adv Mater; 2022 Sep; 34(39):e2204890. PubMed ID: 35962737
    [TBL] [Abstract][Full Text] [Related]  

  • 78. 4D printing of a self-morphing polymer driven by a swellable guest medium.
    Su JW; Tao X; Deng H; Zhang C; Jiang S; Lin Y; Lin J
    Soft Matter; 2018 Jan; 14(5):765-772. PubMed ID: 29302670
    [TBL] [Abstract][Full Text] [Related]  

  • 79. 4D Printing Self-Morphing Structures.
    Bodaghi M; Noroozi R; Zolfagharian A; Fotouhi M; Norouzi S
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31027212
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Topology-Dependent pH-Responsive Actuation and Shape Memory Programming for Biomimetic 4D Printing.
    Pan HM; Goto A
    Macromol Rapid Commun; 2023 May; 44(9):e2300074. PubMed ID: 36880381
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.