These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36683336)

  • 21. Nanocellulose-PE-b-PEG copolymer nanohybrid shish-kebab structure via interfacial crystallization.
    Ochoa M; Collazos N; Le T; Subramaniam R; Sanders M; Singh RP; Depan D
    Carbohydr Polym; 2017 Mar; 159():116-124. PubMed ID: 28038740
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular modelling of nucleation in polymers.
    Muthukumar M
    Philos Trans A Math Phys Eng Sci; 2003 Mar; 361(1804):539-56. PubMed ID: 12662453
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Divining the shape of nascent polymer crystal nuclei.
    Hall KW; Sirk TW; Percec S; Klein ML; Shinoda W
    J Chem Phys; 2019 Oct; 151(14):144901. PubMed ID: 31615257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Phase Field Technique for Modeling and Predicting Flow Induced Crystallization Morphology of Semi-Crystalline Polymers.
    Wang X; Ouyang J; Zhou W; Liu Z
    Polymers (Basel); 2016 Jun; 8(6):. PubMed ID: 30979323
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow-Induced Crystallization in Polyethylene: Effect of Flow Time on Development of Shish-Kebab.
    Zhao R; Chu Z; Ma Z
    Polymers (Basel); 2020 Nov; 12(11):. PubMed ID: 33147732
    [TBL] [Abstract][Full Text] [Related]  

  • 26. How Chain-Folding Crystal Growth Determines the Thermodynamic Stability of Polymer Crystals.
    Jiang X; Reiter G; Hu W
    J Phys Chem B; 2016 Jan; 120(3):566-71. PubMed ID: 26720595
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailored growth of graphene oxide liquid crystals with controlled polymer crystallization in GO-polymer composites.
    Mun SJ; Shim YH; Kim GW; Koo SH; Ahn H; Shin TJ; Kim SO; Kim SY
    Nanoscale; 2021 Feb; 13(4):2720-2727. PubMed ID: 33498078
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lamellar crystal-dominated surfaces of polymer films achieved
    Wang X; Yan F; Bai X; Li H; Yuan M; Liu Y; Hsiao BS; Liu C; Wang Z
    Soft Matter; 2021 Dec; 17(48):10829-10838. PubMed ID: 34796898
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Poly(ε-caprolactone) nanofibers with a self-induced nanohybrid shish-kebab structure mimicking collagen fibrils.
    Wang X; Salick MR; Wang X; Cordie T; Han W; Peng Y; Li Q; Turng LS
    Biomacromolecules; 2013 Oct; 14(10):3557-69. PubMed ID: 24010580
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison study of morphology and crystallization behavior of polyethylene and poly(ethylene oxide) on single-walled carbon nanotubes.
    Zheng X; Xu Q
    J Phys Chem B; 2010 Jul; 114(29):9435-44. PubMed ID: 20593889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kinetic analysis of quasi-one-dimensional growth of polymer lamellar crystals in dilute solutions.
    Zhou Y; Hu W
    J Phys Chem B; 2013 Mar; 117(10):3047-53. PubMed ID: 23419206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New Approach to Optimize Mechanical Properties of the Immiscible Polypropylene/Poly (Ethylene Terephthalate) Blend: Effect of Shish-Kebab and Core-Shell Structure.
    Wang Y; Mi D; Delva L; Cardon L; Zhang J; Ragaert K
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961018
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metastability and transformation of polymorphic crystals in biodegradable poly(butylene adipate).
    Gan Z; Kuwabara K; Abe H; Iwata T; Doi Y
    Biomacromolecules; 2004; 5(2):371-8. PubMed ID: 15002996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Coherent kinetic control over crystal orientation in macroscopic ensembles of polymer nanorods and nanotubes.
    Steinhart M; Göring P; Dernaika H; Prabhukaran M; Gösele U; Hempel E; Thurn-Albrecht T
    Phys Rev Lett; 2006 Jul; 97(2):027801. PubMed ID: 16907479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Polymer crystallization-driven, periodic patterning on carbon nanotubes.
    Li L; Li CY; Ni C
    J Am Chem Soc; 2006 Feb; 128(5):1692-9. PubMed ID: 16448143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fibril crystal growth in diblock copolymer solutions studied by dynamic Monte Carlo simulations.
    Shu R; Zha L; Eman AA; Hu W
    J Phys Chem B; 2015 May; 119(18):5926-32. PubMed ID: 25885690
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of conducting polymers based on carboxylated polyaniline on in vitro CaCO3 crystallization.
    Neira-Carrillo A; Acevedo DF; Miras MC; Barbero CA; Gebauer D; Cölfen H; Arias JL
    Langmuir; 2008 Nov; 24(21):12496-507. PubMed ID: 18839967
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic Monte Carlo simulations of strain-induced crystallization in multiblock copolymers: effects of dilution.
    Guo Y; Wang J; Luo W; Hu W
    Soft Matter; 2022 May; 18(17):3376-3383. PubMed ID: 35416236
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theory of Flow-Induced Fibril Formation in Polymer Solutions.
    Hoffman JD
    J Res Natl Bur Stand (1977); 1979; 84(5):359-384. PubMed ID: 34880525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melt Crystallization of Indomethacin Polymorphs in the Presence of Poly(ethylene oxide): Selective Enrichment of the Polymer at the Crystal-Liquid Interface.
    Zhang J; Shi Q; Guo M; Liu Z; Cai T
    Mol Pharm; 2020 Jun; 17(6):2064-2071. PubMed ID: 32298128
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.