These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 36683406)

  • 21. Deep Learning for Population Genetic Inference.
    Sheehan S; Song YS
    PLoS Comput Biol; 2016 Mar; 12(3):e1004845. PubMed ID: 27018908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding deep learning - challenges and prospects.
    Adnan N; Umer F
    J Pak Med Assoc; 2022 Feb; 72(Suppl 1)(2):S59-S63. PubMed ID: 35202373
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cultural and Creative Product Design and Image Recognition Based on Deep Learning.
    Li R; Wang C
    Comput Intell Neurosci; 2022; 2022():7256584. PubMed ID: 35865496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep learning to detect Alzheimer's disease from neuroimaging: A systematic literature review.
    Ebrahimighahnavieh MA; Luo S; Chiong R
    Comput Methods Programs Biomed; 2020 Apr; 187():105242. PubMed ID: 31837630
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Copula-Based Data Augmentation on a Deep Learning Architecture for Cardiac Sensor Fusion.
    Silva D; Leonhardt S; Antink CH
    IEEE J Biomed Health Inform; 2021 Jul; 25(7):2521-2532. PubMed ID: 33237869
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Next-generation deep learning based on simulators and synthetic data.
    de Melo CM; Torralba A; Guibas L; DiCarlo J; Chellappa R; Hodgins J
    Trends Cogn Sci; 2022 Feb; 26(2):174-187. PubMed ID: 34955426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.
    Wang W; Chen B; Xia P; Hu J; Peng Y
    Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Performance of deep learning restoration methods for the extraction of particle dynamics in noisy microscopy image sequences.
    Kefer P; Iqbal F; Locatelli M; Lawrimore J; Zhang M; Bloom K; Bonin K; Vidi PA; Liu J
    Mol Biol Cell; 2021 Apr; 32(9):903-914. PubMed ID: 33502895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Machine Learning Algorithms in Neuroimaging: An Overview.
    Stumpo V; Kernbach JM; van Niftrik CHB; Sebök M; Fierstra J; Regli L; Serra C; Staartjes VE
    Acta Neurochir Suppl; 2022; 134():125-138. PubMed ID: 34862537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ENNGene: an Easy Neural Network model building tool for Genomics.
    Chalupová E; Vaculík O; Poláček J; Jozefov F; Majtner T; Alexiou P
    BMC Genomics; 2022 Mar; 23(1):248. PubMed ID: 35361122
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Boosting tissue-specific prediction of active cis-regulatory regions through deep learning and Bayesian optimization techniques.
    Cappelletti L; Petrini A; Gliozzo J; Casiraghi E; Schubach M; Kircher M; Valentini G
    BMC Bioinformatics; 2022 Dec; 23(Suppl 2):154. PubMed ID: 36510125
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Polynomial Neural Networks.
    Chrysos GG; Moschoglou S; Bouritsas G; Deng J; Panagakis Y; Zafeiriou S
    IEEE Trans Pattern Anal Mach Intell; 2022 Aug; 44(8):4021-4034. PubMed ID: 33571091
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Heart rate estimation from ballistocardiographic signals using deep learning.
    Pröll SM; Tappeiner E; Hofbauer S; Kolbitsch C; Schubert R; Fritscher KD
    Physiol Meas; 2021 Jul; 42(7):. PubMed ID: 34198282
    [No Abstract]   [Full Text] [Related]  

  • 36. Blinded Predictions and Post Hoc Analysis of the Second Solubility Challenge Data: Exploring Training Data and Feature Set Selection for Machine and Deep Learning Models.
    Conn JGM; Carter JW; Conn JJA; Subramanian V; Baxter A; Engkvist O; Llinas A; Ratkova EL; Pickett SD; McDonagh JL; Palmer DS
    J Chem Inf Model; 2023 Feb; 63(4):1099-1113. PubMed ID: 36758178
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of the output factor using machine and deep learning approach in uniform scanning proton therapy.
    Grewal HS; Chacko MS; Ahmad S; Jin H
    J Appl Clin Med Phys; 2020 Jul; 21(7):128-134. PubMed ID: 32419245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Intelligent Diagnosis Method of Brain MRI Tumor Segmentation Using Deep Convolutional Neural Network and SVM Algorithm.
    Wu W; Li D; Du J; Gao X; Gu W; Zhao F; Feng X; Yan H
    Comput Math Methods Med; 2020; 2020():6789306. PubMed ID: 32733596
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Application of deep learning methods in biological networks.
    Jin S; Zeng X; Xia F; Huang W; Liu X
    Brief Bioinform; 2021 Mar; 22(2):1902-1917. PubMed ID: 32363401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An empirical comparison of deep learning explainability approaches for EEG using simulated ground truth.
    Sujatha Ravindran A; Contreras-Vidal J
    Sci Rep; 2023 Oct; 13(1):17709. PubMed ID: 37853010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.