These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 36683406)

  • 41. BioDeepfuse: a hybrid deep learning approach with integrated feature extraction techniques for enhanced non-coding RNA classification.
    Avila Santos AP; de Almeida BLS; Bonidia RP; Stadler PF; Stefanic P; Mandic-Mulec I; Rocha U; Sanches DS; de Carvalho ACPLF
    RNA Biol; 2024 Jan; 21(1):1-12. PubMed ID: 38528797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Likelihood approximation networks (LANs) for fast inference of simulation models in cognitive neuroscience.
    Fengler A; Govindarajan LN; Chen T; Frank MJ
    Elife; 2021 Apr; 10():. PubMed ID: 33821788
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Deep learning to detect Alzheimer's disease from neuroimaging: A systematic literature review.
    Ebrahimighahnavieh MA; Luo S; Chiong R
    Comput Methods Programs Biomed; 2020 Apr; 187():105242. PubMed ID: 31837630
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Understanding deep learning - challenges and prospects.
    Adnan N; Umer F
    J Pak Med Assoc; 2022 Feb; 72(Suppl 1)(2):S59-S63. PubMed ID: 35202373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.
    Wang W; Chen B; Xia P; Hu J; Peng Y
    Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of deep learning methods in biological networks.
    Jin S; Zeng X; Xia F; Huang W; Liu X
    Brief Bioinform; 2021 Mar; 22(2):1902-1917. PubMed ID: 32363401
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Prediction of the output factor using machine and deep learning approach in uniform scanning proton therapy.
    Grewal HS; Chacko MS; Ahmad S; Jin H
    J Appl Clin Med Phys; 2020 Jul; 21(7):128-134. PubMed ID: 32419245
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Deep Learning for Epidemiologists: An Introduction to Neural Networks.
    Serghiou S; Rough K
    Am J Epidemiol; 2023 Nov; 192(11):1904-1916. PubMed ID: 37139570
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cultural and Creative Product Design and Image Recognition Based on Deep Learning.
    Li R; Wang C
    Comput Intell Neurosci; 2022; 2022():7256584. PubMed ID: 35865496
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Deep learning in radiology: An overview of the concepts and a survey of the state of the art with focus on MRI.
    Mazurowski MA; Buda M; Saha A; Bashir MR
    J Magn Reson Imaging; 2019 Apr; 49(4):939-954. PubMed ID: 30575178
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.
    Korotcov A; Tkachenko V; Russo DP; Ekins S
    Mol Pharm; 2017 Dec; 14(12):4462-4475. PubMed ID: 29096442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Leveraging deep learning algorithms for synthetic data generation to design and analyze biological networks.
    Achuthan S; Chatterjee R; Kotnala S; Mohanty A; Bhattacharya S; Salgia R; Kulkarni P
    J Biosci; 2022; 47():. PubMed ID: 36222162
    [TBL] [Abstract][Full Text] [Related]  

  • 53. dnadna: a deep learning framework for population genetics inference.
    Sanchez T; Bray EM; Jobic P; Guez J; Letournel AC; Charpiat G; Cury J; Jay F
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36445000
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Review of Machine Learning Techniques in Soft Tissue Biomechanics and Biomaterials.
    Donmazov S; Saruhan EN; Pekkan K; Piskin S
    Cardiovasc Eng Technol; 2024 Jul; ():. PubMed ID: 38956008
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Deep Learning Empowered Structural Health Monitoring and Damage Diagnostics for Structures with Weldment via Decoding Ultrasonic Guided Wave.
    Zhang Z; Pan H; Wang X; Lin Z
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35891068
    [TBL] [Abstract][Full Text] [Related]  

  • 56. INTERPRETING GENERATIVE ADVERSARIAL NETWORKS TO INFER NATURAL SELECTION FROM GENETIC DATA.
    Riley R; Mathieson I; Mathieson S
    bioRxiv; 2023 Jul; ():. PubMed ID: 36945387
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Active learning using deep Bayesian networks for surgical workflow analysis.
    Bodenstedt S; Rivoir D; Jenke A; Wagner M; Breucha M; Müller-Stich B; Mees ST; Weitz J; Speidel S
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):1079-1087. PubMed ID: 30968355
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A genetic programming-based convolutional deep learning algorithm for identifying COVID-19 cases via X-ray images.
    Najaran MHT
    Artif Intell Med; 2023 Aug; 142():102571. PubMed ID: 37316095
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Deep learning tools to accelerate antibiotic discovery.
    Cesaro A; Bagheri M; Torres M; Wan F; de la Fuente-Nunez C
    Expert Opin Drug Discov; 2023; 18(11):1245-1257. PubMed ID: 37794737
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Population pharmacokinetic model selection assisted by machine learning.
    Sibieude E; Khandelwal A; Girard P; Hesthaven JS; Terranova N
    J Pharmacokinet Pharmacodyn; 2022 Apr; 49(2):257-270. PubMed ID: 34708337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.