These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36683442)

  • 1. StomaAI: an efficient and user-friendly tool for measurement of stomatal pores and density using deep computer vision.
    Sai N; Bockman JP; Chen H; Watson-Haigh N; Xu B; Feng X; Piechatzek A; Shen C; Gilliham M
    New Phytol; 2023 Apr; 238(2):904-915. PubMed ID: 36683442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. StomataScorer: a portable and high-throughput leaf stomata trait scorer combined with deep learning and an improved CV model.
    Liang X; Xu X; Wang Z; He L; Zhang K; Liang B; Ye J; Shi J; Wu X; Dai M; Yang W
    Plant Biotechnol J; 2022 Mar; 20(3):577-591. PubMed ID: 34717024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RotatedStomataNet: a deep rotated object detection network for directional stomata phenotype analysis.
    Yang X; Wang J; Li F; Zhou C; Wu M; Zheng C; Yang L; Li Z; Li Y; Guo S; Song C
    Plant Cell Rep; 2024 Apr; 43(5):126. PubMed ID: 38652181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Deep Learning-Based Method for Automatic Assessment of Stomatal Index in Wheat Microscopic Images of Leaf Epidermis.
    Zhu C; Hu Y; Mao H; Li S; Li F; Zhao C; Luo L; Liu W; Yuan X
    Front Plant Sci; 2021; 12():716784. PubMed ID: 34539710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical topometry and machine learning to rapidly phenotype stomatal patterning traits for maize QTL mapping.
    Xie J; Fernandes SB; Mayfield-Jones D; Erice G; Choi M; E Lipka A; Leakey ADB
    Plant Physiol; 2021 Nov; 187(3):1462-1480. PubMed ID: 34618057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SLPA-Net: A Real-Time Recognition Network for Intelligent Stomata Localization and Phenotypic Analysis.
    Yang XH; Wang YT; Wu MH; Li F; Zhou CL; Yang LJ; Zheng C; Li Y; Li Z; Guo SY; Song CP
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(3):372-382. PubMed ID: 38335071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stomatal development in the grasses: lessons from models and crops (and crop models).
    McKown KH; Bergmann DC
    New Phytol; 2020 Sep; 227(6):1636-1648. PubMed ID: 31985072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Rapid and Simple Method for Microscopy-Based Stomata Analyses.
    Eisele JF; Fäßler F; Bürgel PF; Chaban C
    PLoS One; 2016; 11(10):e0164576. PubMed ID: 27732636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. StomataCounter: a neural network for automatic stomata identification and counting.
    Fetter KC; Eberhardt S; Barclay RS; Wing S; Keller SR
    New Phytol; 2019 Aug; 223(3):1671-1681. PubMed ID: 31059134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of deep learning for the analysis of stomata: A review of current methods and future directions.
    Gibbs JA; Burgess AJ
    J Exp Bot; 2024 May; ():. PubMed ID: 38716775
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated estimation of stomatal number and aperture in haskap (Lonicera caerulea L.).
    Meng X; Nakano A; Hoshino Y
    Planta; 2023 Sep; 258(4):77. PubMed ID: 37673805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotyping stomatal closure by thermal imaging for GWAS and TWAS of water use efficiency-related genes.
    Pignon CP; Fernandes SB; Valluru R; Bandillo N; Lozano R; Buckler E; Gore MA; Long SP; Brown PJ; Leakey ADB
    Plant Physiol; 2021 Dec; 187(4):2544-2562. PubMed ID: 34618072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana.
    Dow GJ; Berry JA; Bergmann DC
    New Phytol; 2014 Mar; 201(4):1205-1217. PubMed ID: 24206523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pores for Thought: Can Genetic Manipulation of Stomatal Density Protect Future Rice Yields?
    Buckley CR; Caine RS; Gray JE
    Front Plant Sci; 2019; 10():1783. PubMed ID: 32117345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stomatal traits as a determinant of superior salinity tolerance in wild barley.
    Kiani-Pouya A; Rasouli F; Rabbi B; Falakboland Z; Yong M; Chen ZH; Zhou M; Shabala S
    J Plant Physiol; 2020 Feb; 245():153108. PubMed ID: 31927218
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses.
    Liu T; Ohashi-Ito K; Bergmann DC
    Development; 2009 Jul; 136(13):2265-76. PubMed ID: 19502487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homologous genes of epidermal patterning factor regulate stomatal development in rice.
    Lu J; He J; Zhou X; Zhong J; Li J; Liang YK
    J Plant Physiol; 2019; 234-235():18-27. PubMed ID: 30660943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Clear Nail Polish to Make Arabidopsis Epidermal Impressions for Measuring the Change of Stomatal Aperture Size in Immune Response.
    Wu S; Zhao B
    Methods Mol Biol; 2017; 1578():243-248. PubMed ID: 28220430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis.
    Tanaka Y; Sugano SS; Shimada T; Hara-Nishimura I
    New Phytol; 2013 May; 198(3):757-764. PubMed ID: 23432385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of stomata clustering on leaf gas exchange.
    Lehmann P; Or D
    New Phytol; 2015 Sep; 207(4):1015-25. PubMed ID: 25967110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.