These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

587 related articles for article (PubMed ID: 36683758)

  • 1. Functional engineering strategies of 3D printed implants for hard tissue replacement.
    Chen C; Huang B; Liu Y; Liu F; Lee IS
    Regen Biomater; 2023; 10():rbac094. PubMed ID: 36683758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current status of three-dimensional printing inks for soft tissue regeneration.
    Kim JE; Kim SH; Jung Y
    Tissue Eng Regen Med; 2016 Dec; 13(6):636-646. PubMed ID: 30603445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Biomaterials for 3D Printing and Tissue Engineering.
    Jammalamadaka U; Tappa K
    J Funct Biomater; 2018 Mar; 9(1):. PubMed ID: 29494503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanomaterial integrated 3D printing for biomedical applications.
    Zhang L; Forgham H; Shen A; Wang J; Zhu J; Huang X; Tang SY; Xu C; Davis TP; Qiao R
    J Mater Chem B; 2022 Sep; 10(37):7473-7490. PubMed ID: 35993266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomaterials in bone and mineralized tissue engineering using 3D printing and bioprinting technologies.
    Rahimnejad M; Rezvaninejad R; Rezvaninejad R; França R
    Biomed Phys Eng Express; 2021 Oct; 7(6):. PubMed ID: 34438382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent Vascularized 3D/4D/5D/6D-Printed Tissue Scaffolds.
    Han X; Saiding Q; Cai X; Xiao Y; Wang P; Cai Z; Gong X; Gong W; Zhang X; Cui W
    Nanomicro Lett; 2023 Oct; 15(1):239. PubMed ID: 37907770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printed polymer-mineral composite biomaterials for bone tissue engineering: Fabrication and characterization.
    Babilotte J; Guduric V; Le Nihouannen D; Naveau A; Fricain JC; Catros S
    J Biomed Mater Res B Appl Biomater; 2019 Nov; 107(8):2579-2595. PubMed ID: 30848068
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for inclusion of growth factors into 3D printed bone grafts.
    Longoni A; Li J; Lindberg GCJ; Rnjak-Kovacina J; Wise LM; Hooper GJ; Woodfield TBF; Kieser DC; Lim KS
    Essays Biochem; 2021 Aug; 65(3):569-585. PubMed ID: 34156062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Status of 3D Printing Technology for Preparing Bioceramic Materials].
    Zhang J; Li M; Tang B; Dong H; Yu Q
    Zhongguo Yi Liao Qi Xie Za Zhi; 2023 Nov; 47(6):651-658. PubMed ID: 38086723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Translational 3D Printing for Cartilage, Bone, and Osteochondral Tissue Engineering.
    Wang S; Zhao S; Yu J; Gu Z; Zhang Y
    Small; 2022 Sep; 18(36):e2201869. PubMed ID: 35713246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in 3D printing of composite scaffolds for the repairment of bone tissue associated defects.
    Anandhapadman A; Venkateswaran A; Jayaraman H; Veerabadran Ghone N
    Biotechnol Prog; 2022 May; 38(3):e3234. PubMed ID: 35037419
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering.
    Abdollahiyan P; Oroojalian F; Hejazi M; de la Guardia M; Mokhtarzadeh A
    J Control Release; 2021 May; 333():391-417. PubMed ID: 33823222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing.
    Wang Y; Gao M; Wang D; Sun L; Webster TJ
    Int J Nanomedicine; 2020; 15():215-226. PubMed ID: 32021175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing for clinical application in otorhinolaryngology.
    Zhong N; Zhao X
    Eur Arch Otorhinolaryngol; 2017 Dec; 274(12):4079-4089. PubMed ID: 28929219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Critical Review of Additive Manufacturing Techniques and Associated Biomaterials Used in Bone Tissue Engineering.
    Wu Y; Lu Y; Zhao M; Bosiakov S; Li L
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in 3D-printed polylactide and polycaprolactone-based biomaterials for tissue engineering applications.
    Arif ZU; Khalid MY; Noroozi R; Sadeghianmaryan A; Jalalvand M; Hossain M
    Int J Biol Macromol; 2022 Oct; 218():930-968. PubMed ID: 35896130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.