These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36684744)

  • 1. Ten new high-quality genome assemblies for diverse bioenergy sorghum genotypes.
    Voelker WG; Krishnan K; Chougule K; Alexander LC; Lu Z; Olson A; Ware D; Songsomboon K; Ponce C; Brenton ZW; Boatwright JL; Cooper EA
    Front Plant Sci; 2022; 13():1040909. PubMed ID: 36684744
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-Wide Association Study for Major Biofuel Traits in Sorghum Using Minicore Collection.
    Rayaprolu L; Selvanayagam S; Rao DM; Gupta R; Das RR; Rathore A; Gandham P; Kiranmayee KNSU; Deshpande SP; Are AK
    Protein Pept Lett; 2021; 28(8):909-928. PubMed ID: 33588716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a high-density genetic linkage map and QTL mapping for bioenergy-related traits in sweet sorghum [
    Guden B; Yol E; Erdurmus C; Lucas SJ; Uzun B
    Front Plant Sci; 2023; 14():1081931. PubMed ID: 37342135
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic characterization of a Sorghum bicolor multiparent mapping population emphasizing carbon-partitioning dynamics.
    Boatwright JL; Brenton ZW; Boyles RE; Sapkota S; Myers MT; Jordan KE; Dale SM; Shakoor N; Cooper EA; Morris GP; Kresovich S
    G3 (Bethesda); 2021 Apr; 11(4):. PubMed ID: 33681979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Major impacts of widespread structural variation on sorghum.
    Zhang Z; Gomes Viana JP; Zhang B; Walden KKO; Müller Paul H; Moose SP; Morris GP; Daum C; Barry KW; Shakoor N; Hudson ME
    Genome Res; 2024 Mar; 34(2):286-299. PubMed ID: 38479835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Association mapping of brassinosteroid candidate genes and plant architecture in a diverse panel of Sorghum bicolor.
    Mantilla Perez MB; Zhao J; Yin Y; Hu J; Salas Fernandez MG
    Theor Appl Genet; 2014 Dec; 127(12):2645-62. PubMed ID: 25326721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Genomic Resource for the Development, Improvement, and Exploitation of Sorghum for Bioenergy.
    Brenton ZW; Cooper EA; Myers MT; Boyles RE; Shakoor N; Zielinski KJ; Rauh BL; Bridges WC; Morris GP; Kresovich S
    Genetics; 2016 Sep; 204(1):21-33. PubMed ID: 27356613
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications.
    Yang L; Zhou Q; Sheng X; Chen X; Hua Y; Lin S; Luo Q; Yu B; Shao T; Wu Y; Chang J; Li Y; Tu M
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37833996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QTL mapping for bioenergy traits in sweet sorghum recombinant inbred lines.
    Souza VF; Pereira GDS; Pastina MM; Parrella RADC; Simeone MLF; Barros BA; Noda RW; da Costa E Silva L; Magalhães JV; Schaffert RE; Garcia AAF; Damasceno CMB
    G3 (Bethesda); 2021 Oct; 11(11):. PubMed ID: 34519766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenotypic and molecular characterization of sweet sorghum accessions for bioenergy production.
    da Silva MJ; Pastina MM; de Souza VF; Schaffert RE; Carneiro PCS; Noda RW; Carneiro JES; Damasceno CMB; Parrella RADC
    PLoS One; 2017; 12(8):e0183504. PubMed ID: 28817696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water resource potential for large-scale sweet sorghum production as bioenergy feedstock in Northern China.
    Fu H; Chen Y; Yang X; Di J; Xu M; Zhang B
    Sci Total Environ; 2019 Feb; 653():758-764. PubMed ID: 30759601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput genomics in sorghum: from whole-genome resequencing to a SNP screening array.
    Bekele WA; Wieckhorst S; Friedt W; Snowdon RJ
    Plant Biotechnol J; 2013 Dec; 11(9):1112-25. PubMed ID: 23919585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic patterns of structural variation among diverse genotypes of Sorghum bicolor and a potential role for deletions in local adaptation.
    Songsomboon K; Brenton Z; Heuser J; Kresovich S; Shakoor N; Mockler T; Cooper EA
    G3 (Bethesda); 2021 Jul; 11(7):. PubMed ID: 33950177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common metabolic networks contribute to carbon sink strength of sorghum internodes: implications for bioenergy improvement.
    Li Y; Tu M; Feng Y; Wang W; Messing J
    Biotechnol Biofuels; 2019; 12():274. PubMed ID: 31832097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Longitudinal genome-wide association study reveals early QTL that predict biomass accumulation under cold stress in sorghum.
    Agnew E; Ziegler G; Lee S; Lizárraga C; Fahlgren N; Baxter I; Mockler TC; Shakoor N
    Front Plant Sci; 2024; 15():1278802. PubMed ID: 38807776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Whole-genome resequencing of Sorghum bicolor and S. bicolor × S. halepense lines provides new insights for improving plant agroecological characteristics.
    Habyarimana E; Gorthy S; Baloch FS; Ercisli S; Chung G
    Sci Rep; 2022 Apr; 12(1):5556. PubMed ID: 35365708
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorghum genetic, genomic, and breeding resources.
    Xin Z; Wang M; Cuevas HE; Chen J; Harrison M; Pugh NA; Morris G
    Planta; 2021 Nov; 254(6):114. PubMed ID: 34739592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sweet sorghum as biofuel feedstock: recent advances and available resources.
    Mathur S; Umakanth AV; Tonapi VA; Sharma R; Sharma MK
    Biotechnol Biofuels; 2017; 10():146. PubMed ID: 28603553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor).
    Zheng LY; Guo XS; He B; Sun LJ; Peng Y; Dong SS; Liu TF; Jiang S; Ramachandran S; Liu CM; Jing HC
    Genome Biol; 2011 Nov; 12(11):R114. PubMed ID: 22104744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sorghum Pan-Genome Explores the Functional Utility for Genomic-Assisted Breeding to Accelerate the Genetic Gain.
    Ruperao P; Thirunavukkarasu N; Gandham P; Selvanayagam S; Govindaraj M; Nebie B; Manyasa E; Gupta R; Das RR; Odeny DA; Gandhi H; Edwards D; Deshpande SP; Rathore A
    Front Plant Sci; 2021; 12():666342. PubMed ID: 34140962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.