These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 3668523)
1. Spectral and kinetic studies on the binding of trithiomolybdate to bovine and canine serum albumin in vitro: the interaction with copper. Woods M; Mason J J Inorg Biochem; 1987 Aug; 30(4):261-72. PubMed ID: 3668523 [TBL] [Abstract][Full Text] [Related]
2. Accumulation of copper on albumin in bovine plasma in vivo after intravenous trithiomolybdate administration. Mason J; Woods M; Poole DB Res Vet Sci; 1986 Jul; 41(1):108-13. PubMed ID: 3764095 [TBL] [Abstract][Full Text] [Related]
3. Copper and zinc ion binding by bovine, dog, and rat serum albumins. Giroux E; Schoun J J Inorg Biochem; 1981 Jul; 14(4):359-62. PubMed ID: 7276934 [TBL] [Abstract][Full Text] [Related]
4. Some studies on the metabolism of labelled molybdenum compounds in cattle. Hynes M; Woods M; Poole D; Rogers P; Mason J J Inorg Biochem; 1985 Aug; 24(4):279-88. PubMed ID: 4045448 [TBL] [Abstract][Full Text] [Related]
5. Chloride ion nuclear magnetic resonance spectroscopy probe studies of copper and nickel binding to serum albumins. Mohanakrishnan P; Chignell CF; Cox RH J Pharm Sci; 1985 Jan; 74(1):61-3. PubMed ID: 3981420 [TBL] [Abstract][Full Text] [Related]
6. Molybdenum and copper kinetics after tetrathiomolybdate injection in LEC rats: specific role of serum albumin. Suzuki KT; Ogra Y; Ohmichi M J Trace Elem Med Biol; 1995 Oct; 9(3):170-5. PubMed ID: 8605607 [TBL] [Abstract][Full Text] [Related]
7. Copper and nickel binding to canine serum albumin. A circular dichroism study. Mohanakrishnan P; Chignell CF Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 79(2):321-3. PubMed ID: 6151461 [TBL] [Abstract][Full Text] [Related]
8. Short peptides are not reliable models of thermodynamic and kinetic properties of the N-terminal metal binding site in serum albumin. Sokolowska M; Krezel A; Dyba M; Szewczuk Z; Bal W Eur J Biochem; 2002 Feb; 269(4):1323-31. PubMed ID: 11856367 [TBL] [Abstract][Full Text] [Related]
9. The uptake and intracellular distribution of [35S]trithiomolybdate in bovine liver in vivo. Wang ZY; Poole D; Mason J J Inorg Biochem; 1987 Oct; 31(2):85-93. PubMed ID: 3430149 [TBL] [Abstract][Full Text] [Related]
10. Studies on the uptake and subsequent tissue distribution of [35S]trithiomolybdate in rats: effects on metallothionein copper in liver, kidney, and intestine. Wang ZY; Mason J J Inorg Biochem; 1988 May; 33(1):19-29. PubMed ID: 3379395 [TBL] [Abstract][Full Text] [Related]
11. Some studies on the metabolism and the effects of 99Mo- and 35S-labelled thiomolybdates after intravenous infusion in sheep. Hynes M; Lamand M; Montel G; Mason J Br J Nutr; 1984 Jul; 52(1):149-58. PubMed ID: 6743635 [TBL] [Abstract][Full Text] [Related]
12. Characterization of the copper(II)- and nickel(II)-transport site of human serum albumin. Studies of copper(II) and nickel(II) binding to peptide 1-24 of human serum albumin by 13C and 1H NMR spectroscopy. Laussac JP; Sarkar B Biochemistry; 1984 Jun; 23(12):2832-8. PubMed ID: 6547847 [TBL] [Abstract][Full Text] [Related]
13. The inhibition of bovine ceruloplasmin oxidase activity by thiomolybdates in vivo and in vitro: a reversible interaction. Lannon B; Mason J J Inorg Biochem; 1986 Feb; 26(2):107-15. PubMed ID: 3958708 [TBL] [Abstract][Full Text] [Related]
14. Ion-specific electrode study of copper binding to serum albumins. Mohanakrishnan P; Chignell CF J Pharm Sci; 1982 Oct; 71(10):1180-2. PubMed ID: 7143222 [TBL] [Abstract][Full Text] [Related]
15. Studies of copper(II) binding to glycylglycyl-L-tyrosine-N-methyl amide, a peptide mimicking the NH2-terminal copper(II)-binding site of dog serum albumin by analytical potentiometry, spectrophotometry, CD, and NMR spectroscopy. Muller D; Decock-Le Révérend B; Sarkar B J Inorg Biochem; 1984 Jul; 21(3):215-26. PubMed ID: 6470702 [TBL] [Abstract][Full Text] [Related]
16. Spectroscopic studies on the interaction between tetrandrine and two serum albumins by chemometrics methods. Cheng Z; Liu R; Jiang X Spectrochim Acta A Mol Biomol Spectrosc; 2013 Nov; 115():92-105. PubMed ID: 23831983 [TBL] [Abstract][Full Text] [Related]
17. Involvement of a lysine residue in the N-terminal Ni2+ and Cu2+ binding site of serum albumins. Comparison with Co2+, Cd2+ and Al3+. Sadler PJ; Tucker A; Viles JH Eur J Biochem; 1994 Feb; 220(1):193-200. PubMed ID: 8119287 [TBL] [Abstract][Full Text] [Related]
18. Species-dependent stereoselective drug binding to albumin: a circular dichroism study. Pistolozzi M; Bertucci C Chirality; 2008 Mar; 20(3-4):552-8. PubMed ID: 18172833 [TBL] [Abstract][Full Text] [Related]
19. Binding of the organophosphates parathion and paraoxon to bovine and human serum albumin. Mourik J; de Jong LP Arch Toxicol; 1978 Oct; 41(1):43-8. PubMed ID: 568924 [TBL] [Abstract][Full Text] [Related]
20. Zinc(II) and copper(II) binding to serum albumin. A comparative study of dog, bovine, and human albumin. Masuoka J; Saltman P J Biol Chem; 1994 Oct; 269(41):25557-61. PubMed ID: 7929257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]