BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36685258)

  • 1. Elucidation of microbial lignin degradation pathways using synthetic isotope-labelled lignin.
    Alruwaili A; Rashid GMM; Sodré V; Mason J; Rehman Z; Menakath AK; Cheung D; Brown SP; Bugg TDH
    RSC Chem Biol; 2023 Jan; 4(1):47-55. PubMed ID: 36685258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Hydroxyquinol Degradation Pathway in Rhodococcus jostii RHA1 and
    Spence EM; Scott HT; Dumond L; Calvo-Bado L; di Monaco S; Williamson JJ; Persinoti GF; Squina FM; Bugg TDH
    Appl Environ Microbiol; 2020 Sep; 86(19):. PubMed ID: 32737130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breaking down lignin to high-value chemicals: the conversion of lignocellulose to vanillin in a gene deletion mutant of Rhodococcus jostii RHA1.
    Sainsbury PD; Hardiman EM; Ahmad M; Otani H; Seghezzi N; Eltis LD; Bugg TD
    ACS Chem Biol; 2013 Oct; 8(10):2151-6. PubMed ID: 23898824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase.
    Ahmad M; Roberts JN; Hardiman EM; Singh R; Eltis LD; Bugg TD
    Biochemistry; 2011 Jun; 50(23):5096-107. PubMed ID: 21534568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of Rhodococcus jostii RHA1 for production of pyridine-dicarboxylic acids from lignin.
    Spence EM; Calvo-Bado L; Mines P; Bugg TDH
    Microb Cell Fact; 2021 Jan; 20(1):15. PubMed ID: 33468127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of
    Alruwaili A; Rashid GMM; Bugg TDH
    Green Chem; 2023 May; 25(9):3549-3560. PubMed ID: 37179958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The catabolism of lignin-derived
    Wolf ME; Lalande AT; Newman BL; Bleem AC; Palumbo CT; Beckham GT; Eltis LD
    Appl Environ Microbiol; 2024 Mar; 90(3):e0215523. PubMed ID: 38380926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of
    Li X; He Y; Zhang L; Xu Z; Ben H; Gaffrey MJ; Yang Y; Yang S; Yuan JS; Qian WJ; Yang B
    Biotechnol Biofuels; 2019; 12():60. PubMed ID: 30923568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of endogenous multi-copper oxidases mcoA and mcoC in Rhodococcus jostii RHA1 enhances lignin bioconversion to 2,4-pyridine-dicarboxylic acid.
    Rashid GMM; Sodré V; Luo J; Bugg TDH
    Biotechnol Bioeng; 2024 Apr; 121(4):1366-1370. PubMed ID: 38079064
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of Thiamine Diphosphate-Dependent 4-Hydroxybenzoylformate Decarboxylase Enzymes from
    Wei Z; Wilkinson RC; Rashid GMM; Brown D; Fülöp V; Bugg TDH
    Biochemistry; 2019 Dec; 58(52):5281-5293. PubMed ID: 30946572
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catabolism of ethylene glycol by
    Roccor R; Wolf ME; Liu J; Eltis LD
    Appl Environ Microbiol; 2024 Jun; ():e0041624. PubMed ID: 38837369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering of
    Yasin R; Rashid GMM; Ali I; Bugg TDH
    Heliyon; 2023 Sep; 9(9):e19511. PubMed ID: 37810037
    [No Abstract]   [Full Text] [Related]  

  • 13. Chemical intervention in bacterial lignin degradation pathways: Development of selective inhibitors for intradiol and extradiol catechol dioxygenases.
    Sainsbury PD; Mineyeva Y; Mycroft Z; Bugg TD
    Bioorg Chem; 2015 Jun; 60():102-9. PubMed ID: 25984987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mycofactocin-associated dehydrogenase is essential for ethylene glycol metabolism by Rhodococcus jostii RHA1.
    Shimizu T; Suzuki K; Inui M
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):58. PubMed ID: 38175243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phoma herbarum, a soil fungus able to grow on natural lignin and synthetic lignin (DHP) as sole carbon source and cause lignin degradation.
    Bi R; Lawoko M; Henriksson G
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1175-82. PubMed ID: 27260523
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid characterization of the activities of lignin-modifying enzymes based on nanostructure-initiator mass spectrometry (NIMS).
    Deng K; Zeng J; Cheng G; Gao J; Sale KL; Simmons BA; Singh AK; Adams PD; Northen TR
    Biotechnol Biofuels; 2018; 11():266. PubMed ID: 30275906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of alkylguaiacol-degrading cytochromes P450 for the biocatalytic valorization of lignin.
    Fetherolf MM; Levy-Booth DJ; Navas LE; Liu J; Grigg JC; Wilson A; Katahira R; Beckham GT; Mohn WW; Eltis LD
    Proc Natl Acad Sci U S A; 2020 Oct; 117(41):25771-25778. PubMed ID: 32989155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adventures in Rhodococcus - from steroids to explosives.
    Yam KC; Okamoto S; Roberts JN; Eltis LD
    Can J Microbiol; 2011 Mar; 57(3):155-68. PubMed ID: 21358756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry.
    Weiland F; Kohlstedt M; Wittmann C
    Metab Eng; 2022 May; 71():13-41. PubMed ID: 34864214
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Kontur WS; Bingman CA; Olmsted CN; Wassarman DR; Ulbrich A; Gall DL; Smith RW; Yusko LM; Fox BG; Noguera DR; Coon JJ; Donohue TJ
    J Biol Chem; 2018 Apr; 293(14):4955-4968. PubMed ID: 29449375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.