These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 36685386)

  • 1. Short and long-term phytoremediation capacity of aquatic plants in Cu-polluted environments.
    Enochs B; Meindl G; Shidemantle G; Wuerthner V; Akerele D; Bartholomew A; Bulgrien B; Davis A; Hoyt K; Kung L; Molina M; Miller E; Winship A; Zhang Y; Graney J; Collins D; Hua J
    Heliyon; 2023 Jan; 9(1):e12805. PubMed ID: 36685386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combination of aquatic species and safeners improves the remediation of copper polluted water.
    Panfili I; Bartucca ML; Ballerini E; Del Buono D
    Sci Total Environ; 2017 Dec; 601-602():1263-1270. PubMed ID: 28605844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytoremediation as a management option for contaminated sediments in tidal marshes, flood control areas and dredged sediment landfill sites.
    Bert V; Seuntjens P; Dejonghe W; Lacherez S; Thuy HT; Vandecasteele B
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):745-64. PubMed ID: 19533193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promises and potential of
    Khan AG
    Int J Phytoremediation; 2020; 22(9):900-915. PubMed ID: 32538143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accumulation of heavy metals in native Andean plants: potential tools for soil phytoremediation in Ancash (Peru).
    Chang Kee J; Gonzales MJ; Ponce O; Ramírez L; León V; Torres A; Corpus M; Loayza-Muro R
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33957-33966. PubMed ID: 30280335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal release from contaminated leaf litter and leachate toxicity for the freshwater crustacean Gammarus fossarum.
    Maunoury-Danger F; Felten V; Bojic C; Fraysse F; Cosin Ponce M; Dedourge-Geffard O; Geffard A; Guérold F; Danger M
    Environ Sci Pollut Res Int; 2018 Apr; 25(12):11281-11294. PubMed ID: 28624948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of phytoremediation capability of French marigold (
    Biswal B; Singh SK; Patra A; Mohapatra KK
    Int J Phytoremediation; 2022; 24(9):945-954. PubMed ID: 34634952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Meta-Analysis of the Copper, Zinc, and Cadmium Absorption Capacities of Aquatic Plants in Heavy Metal-Polluted Water.
    Li J; Yu H; Luan Y
    Int J Environ Res Public Health; 2015 Nov; 12(12):14958-73. PubMed ID: 26703632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach.
    Rai PK
    Int J Phytoremediation; 2008; 10(2):131-58. PubMed ID: 18709926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoremediation of toxic chemicals in aquatic environment with special emphasis on duckweed mediated approaches.
    Thakuria A; Singh KK; Dutta A; Corton E; Stom D; Barbora L; Goswami P
    Int J Phytoremediation; 2023; 25(13):1699-1713. PubMed ID: 36941761
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal biomonitoring and phytoremediation potentialities of aquatic macrophytes in River Nile.
    Fawzy MA; Badr Nel-S; El-Khatib A; Abo-El-Kassem A
    Environ Monit Assess; 2012 Mar; 184(3):1753-71. PubMed ID: 21562793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of copper by
    Al-Baldawi IA; Yasin SR; Jasim SS; Abdullah SRS; Almansoory AF; Ismail N'
    Heliyon; 2022 Nov; 8(11):e11456. PubMed ID: 36406685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of Cu-resistant plant growth-promoting rhizobacteria and EDTA on phytoremediation efficiency of plants in a Cu-contaminated soil.
    Abbaszadeh-Dahaji P; Baniasad-Asgari A; Hamidpour M
    Environ Sci Pollut Res Int; 2019 Nov; 26(31):31822-31833. PubMed ID: 31487012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.
    Rai PK
    Int J Phytoremediation; 2010 Mar; 12(3):226-42. PubMed ID: 20734618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant growth-promoting bacteria in phytoremediation of metal-polluted soils: Current knowledge and future directions.
    Alves ARA; Yin Q; Oliveira RS; Silva EF; Novo LAB
    Sci Total Environ; 2022 Sep; 838(Pt 4):156435. PubMed ID: 35660615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater.
    Rezania S; Taib SM; Md Din MF; Dahalan FA; Kamyab H
    J Hazard Mater; 2016 Nov; 318():587-599. PubMed ID: 27474848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper phytoremediation potential of wild plant species growing in the mine polluted areas of Armenia.
    Ghazaryan K; Movsesyan H; Ghazaryan N; Watts BA
    Environ Pollut; 2019 Jun; 249():491-501. PubMed ID: 30928521
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature.
    Oladoye PO; Olowe OM; Asemoloye MD
    Chemosphere; 2022 Feb; 288(Pt 2):132555. PubMed ID: 34653492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor).
    Hou W; Chen X; Song G; Wang Q; Chi Chang C
    Plant Physiol Biochem; 2007 Jan; 45(1):62-9. PubMed ID: 17300947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems.
    Nguyen TQ; Sesin V; Kisiala A; Emery RJN
    Environ Toxicol Chem; 2021 Jan; 40(1):7-22. PubMed ID: 33074580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.