These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 36685386)
21. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Chehregani A; Noori M; Yazdi HL Ecotoxicol Environ Saf; 2009 Jul; 72(5):1349-53. PubMed ID: 19386362 [TBL] [Abstract][Full Text] [Related]
22. Phytoremediation potential of castor (Ricinus communis L.) in the soils of the abandoned copper mine in Northern Oman: implications for arid regions. Palanivel TM; Pracejus B; Victor R Environ Sci Pollut Res Int; 2020 May; 27(14):17359-17369. PubMed ID: 32157545 [TBL] [Abstract][Full Text] [Related]
23. Response of Soltani-Gishini MF; Azizian A; Alemzadeh A; Shabani M; Hildebrand D Int J Phytoremediation; 2022; 24(11):1133-1140. PubMed ID: 34870525 [TBL] [Abstract][Full Text] [Related]
25. Physiological Integration Affects Expansion of an Amphibious Clonal Plant from Terrestrial to Cu-Polluted Aquatic Environments. Xu L; Zhou ZF Sci Rep; 2017 Mar; 7():43931. PubMed ID: 28272515 [TBL] [Abstract][Full Text] [Related]
26. The enzymatic and antioxidative stress response of Lemna minor to copper and a chloroacetamide herbicide. Obermeier M; Schröder CA; Helmreich B; Schröder P Environ Sci Pollut Res Int; 2015 Dec; 22(23):18495-507. PubMed ID: 26286797 [TBL] [Abstract][Full Text] [Related]
27. Heavy metals in plants and phytoremediation. Cheng S Environ Sci Pollut Res Int; 2003; 10(5):335-40. PubMed ID: 14535650 [TBL] [Abstract][Full Text] [Related]
28. Bioaugmented Phytoremediation of Metal-Contaminated Soils and Sediments by Hemp and Giant Reed. Ferrarini A; Fracasso A; Spini G; Fornasier F; Taskin E; Fontanella MC; Beone GM; Amaducci S; Puglisi E Front Microbiol; 2021; 12():645893. PubMed ID: 33959108 [TBL] [Abstract][Full Text] [Related]
29. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Manousaki E; Kalogerakis N Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858 [TBL] [Abstract][Full Text] [Related]
30. Duckweed: a potential phytosensor for heavy metals. Sharma R; Lenaghan SC Plant Cell Rep; 2022 Dec; 41(12):2231-2243. PubMed ID: 35980444 [TBL] [Abstract][Full Text] [Related]
31. Comparing the risk of metal leaching in phytoremediation using Noccaea caerulescens with or without electric field. Luo J; Xing X; Qi S; Wu J; Gu XWS Chemosphere; 2019 Feb; 216():661-668. PubMed ID: 30391887 [TBL] [Abstract][Full Text] [Related]
32. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials. Shumaker KL; Begonia G Int J Environ Res Public Health; 2005 Aug; 2(2):293-8. PubMed ID: 16705830 [TBL] [Abstract][Full Text] [Related]
33. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Bidar G; Pruvot C; Garçon G; Verdin A; Shirali P; Douay F Environ Sci Pollut Res Int; 2009 Jan; 16(1):42-53. PubMed ID: 18594892 [TBL] [Abstract][Full Text] [Related]
34. Copper concentration data for water, sediments, and vegetation of urban stormwater ponds treated with copper sulfate algaecide. Lusk MG; Chapman K Data Brief; 2020 Aug; 31():105982. PubMed ID: 32695854 [TBL] [Abstract][Full Text] [Related]
35. Aquatic snails from mining sites have evolved to detect and avoid heavy metals. Lefcort H; Abbott DP; Cleary DA; Howell E; Keller NC; Smith MM Arch Environ Contam Toxicol; 2004 May; 46(4):478-84. PubMed ID: 15253045 [TBL] [Abstract][Full Text] [Related]
36. Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metal-contaminated soil. Fang Y; Cao X; Zhao L Environ Sci Pollut Res Int; 2012 Jun; 19(5):1659-67. PubMed ID: 22161145 [TBL] [Abstract][Full Text] [Related]
37. The effect of long-term freeze-thaw cycles on the stabilization of lead in compound solidified/stabilized lead-contaminated soil. Zhongping Y; Yao W; Xuyong L; Shupei R; Hui X; Jiazhuo C Environ Sci Pollut Res Int; 2021 Jul; 28(28):37413-37423. PubMed ID: 33715119 [TBL] [Abstract][Full Text] [Related]
38. [Role and Mechanism of Low Molecular-Weight-Organic Acids in Enhanced Phytoremediation of Heavy Metal Contaminated Soil]. Fang ZG; Xie JT; Yang Q; Lu YZ; Huang H; Zhu YX; Yin SM; Wu XT; Du ST Huan Jing Ke Xue; 2022 Oct; 43(10):4669-4678. PubMed ID: 36224152 [TBL] [Abstract][Full Text] [Related]
39. Soil contamination and plant uptake of heavy metals at polluted sites in China. Wang QR; Cui YS; Liu XM; Dong YT; Christie P J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 May; 38(5):823-38. PubMed ID: 12744435 [TBL] [Abstract][Full Text] [Related]
40. The treatment of duckweed with a plant biostimulant or a safener improves the plant capacity to clean water polluted by terbuthylazine. Panfili I; Bartucca ML; Del Buono D Sci Total Environ; 2019 Jan; 646():832-840. PubMed ID: 30064109 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]